AQA Maths Mechanics 2 Mark Scheme Pack 2006-2015

Mathematics 6360

MM2A Mechanics 2

Mark Scheme

2006 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key To Mark Scheme And Abbreviations Used In Marking

Μ	mark is for method						
m or dM	mark is dependent on one or more M marks and is for method						
А	mark is dependent on M or m marks and is for accuracy						
В	mark is independent of M or m marks and	d is for method	and accuracy				
E	mark is for explanation						
or ft or F	follow through from previous						
	incorrect result	MC	mis-copy				
CAO	correct answer only	MR	mis-read				
CSO	correct solution only	RA	required accuracy				
AWFW	anything which falls within	$\mathbf{F}\mathbf{W}$	further work				
AWRT	anything which rounds to	ISW	ignore subsequent work				
ACF	any correct form	FIW	from incorrect work				
AG	answer given	BOD	given benefit of doubt				
SC	special case	WR	work replaced by candidate				
OE	or equivalent	FB	formulae book				
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme				
–x EE	deduct <i>x</i> marks for each error	G	graph				
NMS	no method shown	c	candidate				
PI	possibly implied	sf	significant figure(s)				
SCA	substantially correct approach	dp	decimal place(s)				

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

MM2A

Q	Solution	Marks	Total	Comments
1	$5T = 20 \times 9.8 \times 1.5$	M1		Moment equation.
	$51_A = 20 \times 7.6 \times 1.5$	A1		Correct equation
	$T_A = \frac{20 \times 9.8 \times 1.5}{5} = 58.8 \text{ N}$	A1		Correct tension
		M1		Vertical equation with <i>T</i> or moments equation.
	$1 + 58.8 = 20 \times 9.8$	A1		Correct equation
	T = 137.2 N	A1	6	Correct tension
	Total		6	
2(a)	$T\cos 30^\circ = 2 \times 9.8$	M1		Resolving vertically with two terms
	2.00	Al		Correct equation
	$T = \frac{2 \times 9.8}{200}$			
	$\cos 30^{\circ}$	A 1	2	Correct T from correct working
	I = 22.0 N AG	AI	3	Correct T from correct working
(h)	.2	M1		Resolving horizontally
()	$T\cos 60^\circ = 2 \times \frac{v}{2}$	Al		Correct equation
	0.6	dM1		Solving for v
	$v = 1.84 \text{ ms}^{-1}$	A1	4	Correct v
	Total		7	
3(a)(i)	$a - 2 + 12 a^{-t}$	M1A1	2	Differentiating, with at least one term
	u - 2 + 12e			correct. Correct velocity
(ii)	$2 < a \le 14$	B1,B1		For 2, For 14
		B1	3	Correct inequalities
(b)	$s = t^2 + 12e^{-t} + c$	M1		Integrating, with at least one term correct.
		A1		Correct expression with or without <i>c</i>
	$s = 0, t = 0 \Longrightarrow c = -12$	dM1		Finding <i>c</i>
	$s = t^2 + 12e^{-t} - 12$	A1	4	Correct final expression
	Total		9	
4(a)	$P = (30 \times 42) \times 42$	M1		Finding force
	= 52920 W	Al	2	Correct answer from $P = Fv$
(b)(i)	$F = 1200 \times 9.8 \sin 5^\circ + 30v$	M1A1		Finding force. Correct force
	$52920 = (1200 \times 9.8 \sin 5^\circ + 30v)v$	dM1		Using $P = Fv$
	$v^2 + 392\sin 5^\circ v - 1764 = 0$	A1	4	Correct equation from correct working AG
(ii)	$v = \frac{-392 \sin 5^\circ \pm \sqrt{(392 \sin 5^\circ)^2 - 4 \times 1 \times (-1764)}}{2 \times 1}$ v = 28.3 or -62.4	M1		Solving quadratic
	$v = 28.3 \text{ ms}^{-1}$	A1	2	Correct solution
	Total			
	10000		-	

Q	Solution	Marks	Total	Comments
5		M1		Applying Newton's second law with $40v$
	dv			and $\frac{dv}{dt}$.
	$1600 \frac{dt}{dt} = -40v$. 1		dt Correct equation
		AI		Conect equation
		dM1		Separating variables
	$\int_{v} \frac{-dv}{v} = \int \frac{-dt}{40} dt$	ulvi i		Separating variables
	$\ln v = -\frac{t}{c} + c$	dM1		integrating to get lnv term.
	40 t			
	$v = Ae^{-\frac{1}{40}}$	A1		Correct integral with or without <i>c</i>
	$t = 0, v = 20 \Longrightarrow c = 20$	dM1		Finding constant
	$v = 20e^{-\frac{t}{40}}$	A1	7	Correct final result
	Total		7	
6(a)	$\frac{1}{mv^2} = \frac{1}{m} \times 2^2 + mg(3 - 3\cos\theta)$	M1		Three term energy equation
	2 2	A1		Correct equation
	$v^2 = 4 + 6g(1 - \cos\theta)$ AG	dM1	4	Solving for v^2 .
		A1		Correct result from correct working
	2			
(b)	$mg\cos\theta = m\frac{v^2}{2}$	M1		Resolving towards the centre
	3	A1		Correct equation
	$3g\cos\theta = 4 + 6g - 6g\cos\theta$	dM1		Solving for $\cos \theta$
	1+6g			
	$\cos\theta = \frac{4+6g}{9g}$	A1		Correct $\cos \theta$
	$\theta = 44.6^{\circ}$	A1	5	Correct angle
	Total		9	

MM2A (cont)

Q	Solution	Marks	Total	Comments
7(a)	$\frac{100}{0.4} e = 10 \times 9.8$	M1		Use of Hookes law and equilibrium
	e = 0.392 m	A1	2	Correct length
(b)	$EPE = \frac{1}{2} \times \frac{100}{0.4} \times 0.6^2 = 45 \text{ J}$ AG	M1 A1	2	Use of EPE formula Correct value from correct working
(c)(i)	$45 = \frac{1}{2} \times \frac{100}{0.4} (x - 0.4)^2 + \frac{1}{2} \times 10v^2 + 10 \times 9.8(1 - x)$	M1 A1 M1		Expression for EPE with $(x \pm 0.4)^2$ Correct EPE Four term energy equation
	$45 = 125(x - 0.4)^2 + 5v^2 + 98(1 - x)$	B1		Correct GPE
		A1		Correct equation
	$5v^{2} = 98x - 98 + 45 - 125x^{2} + 100x - 20$ $v^{2} = 39.6x - 25x^{2} - 14.6 \text{ AG}$	dM1 A1	7	Solving for v^2 Correct result from correct working
(ii)	$39.6x - 25x^2 - 14.6 = 0$ $25x^2 - 39.6x + 14.6 = 0$,	
	$x = \frac{39.6 \pm \sqrt{39.6^2 - 4 \times 25 \times 14.6}}{2 \times 25}$	M1		Solving quadratic
	=1 or 0.584	A1		Correct solutions
	<i>x</i> = 0.584	A1	3	Appropriate value selected SC Only correct answers given, award M1A1.
	Total		14	
	TOTAL		60	

Mathematics 6360

MM2B Mechanics 2B

Mark Scheme

2006 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key To Mark Scheme And Abbreviations Used In Marking

М	mark is for method						
m or dM	mark is dependent on one or more M marks and is for method						
А	mark is dependent on M or m marks and is for accuracy						
В	mark is independent of M or m marks and	d is for method	and accuracy				
E	mark is for explanation						
or ft or F	follow through from previous						
	incorrect result	MC	mis-copy				
CAO	correct answer only	MR	mis-read				
CSO	correct solution only	RA	required accuracy				
AWFW	anything which falls within	FW	further work				
AWRT	anything which rounds to	ISW	ignore subsequent work				
ACF	any correct form	FIW	from incorrect work				
AG	answer given	BOD	given benefit of doubt				
SC	special case	WR	work replaced by candidate				
OE	or equivalent	FB	formulae book				
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme				
–x EE	deduct <i>x</i> marks for each error	G	graph				
NMS	no method shown	с	candidate				
PI	possibly implied	sf	significant figure(s)				
SCA	substantially correct approach	dp	decimal place(s)				

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

MM2B

Q	Solution	Marks	Total	Comments
1(a)	$\mathbf{v} = (6t^2 - 2t)\mathbf{i} + (1 - 12t^2)\mathbf{j}$	M1		differentiating both components
		A1		one component correct
		A1	3	second component correct
(b)(i)	$\mathbf{v}\left(\frac{1}{2}\right) = \left(\frac{6}{2} - \frac{2}{2}\right)\mathbf{i} + \left(1 - \frac{12}{2}\right)\mathbf{i} = -\frac{1}{2}\mathbf{i}$	M1		substituting the value for t into their v
	$(3) (9 3) (9)^{3} 3^{3}$	A1	2	correct velocity
(ii)	Travelling due south	Alft	1	correct description (Follow through from
				$\mathbf{v} = \pm k \mathbf{j}$)
		N/1		
(C)	$\mathbf{a} = (12t - 2)\mathbf{i} - 24t\mathbf{j}$			differentiating their velocity
	$\mathbf{a}(4) = 46\mathbf{i} - 96\mathbf{j}$		2	correct acceleration at time i
		AI	3	connect acceleration at $i = 4$
(b)	F = 6(46i - 96i) = 276i - 576i	M1		apply Newton's second law correctly
	- · · · · · · · · · · · · · · · · · · ·			
	$\Gamma = \sqrt{27c^2 + 57c^2}$ (20.)	M1		finding magnitude
	$F = \sqrt{2}/6^2 + 5/6^2 = 639$ N	A1	3	correct magnitude
	or			
	$a = \sqrt{46^2 + 96^2} = 106.45$			
	$F = 6 \times 106.45 = 639$ N			
	Total		12	
2(a)		M1		
2(a)	$KE = - \times 0.6 \times 14^{2} = 58.8 J$		2	
	2	AI	2	contect energy
(h)	$0.6 \times 9.8h = 58.8$	M1		two term energy equation involving PE
(~)	58.8			and previous energy
	$h = \frac{58.8}{0.6 - 0.8} = 10 \text{ m}$	A1		correct equation
	0.6×9.8	A1	3	correct height
				Note: Constant acceleration methods not
				accepted.
(c)(i)	WD against resistance	M1		three term energy equation
	$=58.8 - 0.6 \times 9.8 \times 8$	A1		correct equation
	-11.76 - 11.8 I (to 3 sf)	A1	3	correct value
	-11.70-11.83 (10.5 81)			
(ii)	8 <i>F</i> = 11.76	M1		using work done = Fd with $d = 8$
()	F - 1.47 N	Alft	2	correct force
				accept 1.48
				-
(d)	The magnitude of the force would vary	B1	1	appropriate explanation
	with the speed of the ball.			
	Total		11	

	<i>a</i>			~
Q	Solution	Marks	Total	Comments
3(a)	$\begin{array}{c} R \\ \hline T \\ \hline 98 \text{ N} \end{array}$	B1	1	correct force diagram, with labels and arrows.
(b)	$2T = 0.5 \times 98$ T = 24.5 N AG	M1 A1 A1	3	moment equation correct equation correct positive value for the tension from correct working
(c)(i)	$2 \times 2 \times 24.5 = 3 \times 9.8 \times m + 0.5 \times 98$ $m = \frac{98 - 49}{3 \times 9.8} = \frac{5}{3} = 1.67 \text{ kg (to 3 sf)}$ Or $2 \times 2.45 = 3 \times 9.8m$	B1 M1 A1 A1 (M1A1)	4	tension doubled moment equation correct equation correct mass for equation
(ii)	$m = \frac{49}{29.4} = \frac{5}{3} = 1.67 \text{ kg}$ $R = 24.5 \times 2 + 98 + \frac{5}{2} \times 9.8 = 163 \text{ N}$	(M1A1) M1		for finding <i>m</i> considering vertical equilibrium with 3 terms
	3	A1 A1	3	correct equation correct reaction must be consistent with 3(c)(i) if awarding accuracy marks
(d)	This allows the centre of mass to be placed at the <u>centre of the rod</u> for the moment calculations.	B1	1	correct explanation

MM2B (cont)

Q	Solution	Marks	Total	Comments
4(a)	$\frac{1}{2}mU^2 - \frac{1}{2}mv^2 + mgl(1 - \cos 60^\circ)$	M1		three/four term energy equation with a trig
-()	$\frac{-mc}{2} = \frac{-mv}{2} + mgr(1 - \cos 300)$			term
	$U^2 = v^2 + gl$	A1		correct equation
	$v = \sqrt{U^2 - al}$	dM1		solving for v or v^2
	$v = \sqrt{C}$ gr	A1	4	correct v in a simplified form
	2			
(b)	$T - mg\cos 60^\circ = m\frac{v^2}{r}$	M1		resolving towards the centre of the circle
		1) / 1		with three terms
	$T = m \left(\frac{U^2 - gl}{g} + \frac{g}{g} \right) = m \left(\frac{U^2}{g} - \frac{g}{g} \right)$			substituting for v
	(l 2) (l 2)	dM1		making T the subject
		Al	5	correct expression for T . Simplification
				not necessary.
(c)	$T - mg = m \frac{U^2}{m}$	M1		considering the vertical foreas and using
		1111		II^2
	$T = m \left(\frac{U^2}{m} + g \right)$			Newton's second law with $\frac{0}{l}$
		A1	2	correct T
	Total		11	
5(a)	$F = 800 + \frac{1200}{t}t = 800 + 60t$	141		
	20			finding the gradient of the line
	1200a = 800 + 60t	B1		correct intercept
	$a = \frac{800}{100} + \frac{60}{100}t = \frac{2}{100} + \frac{t}{100}t$	dM1		using Newton's second law on two terms
	1200 1200 3 20		_	
	AG	Al	5	correct result from correct working
	t^2 t^2			
(b)	$v = \int \frac{2}{3} + \frac{i}{20} dt = \frac{2i}{3} + \frac{i}{40} + c$	M1		integrating
	$v = 0$ $t = 0 \implies c = 0$	A1		correct integral with or without c
	$2t$ t^2			
	$v = \frac{2i}{2} + \frac{i}{40}$	A1	3	showing $c = 0$
	5 10		U	
(0)	$\int_{0}^{20} 2t = t^{2}$	M1		integrating
(1)	$s = \int_0^{\infty} \frac{1}{3} + \frac{1}{40} dt$	A1		correct integral, with or without <i>c</i> .
	$\begin{bmatrix} t^2 & t^3 \end{bmatrix}^{20}$	JM1		use of both limits on finding o
	$=\left \frac{t}{3}+\frac{t}{120}\right $	awi		use of both limits of finding c
	$\begin{bmatrix} 5 & 125 \end{bmatrix}_0$	A 1	4	agmagt distance
	– 200 III	AI	4	
(A)	T_{1} $2t$			
(u)	The $\frac{1}{3}$ term would change, because only	B1		correct term
	the constant term in the force would			
	change. When integrated this becomes the	B 1	2	correct explanation
	t term in the velocity.	D1		
	I Otal		14	

MWIZB (CON	t)	-		
Q	Solution	Marks	Total	Comments
6(a)	$a = \frac{14^2}{2} = 3.02$	M1		finding acceleration
•()	$u = \frac{1}{50} = 3.92$	Al		correct acceleration
	$F = 1200 \times 3.92$ AG	dM1		use of $F = ma$
	= 4704 N	A1	4	correct force from correct working
(b)	$R = 1200 \times 9.8 = 11760$	B1		normal reaction
	$4704 \le \mu \times 11760$	M1		applying $F \le \mu R$ or $F = \mu R$
	$\mu \ge \frac{4704}{11760}$ AG			
	$\mu \ge 0.4$	A1	3	correct result from correct working
	Total		7	
7(a)	$20\frac{\mathrm{d}v}{\mathrm{d}t} = -10\sqrt{v}$	M1		applying Newton's second law with $\frac{dv}{dt}$
	$dy = \sqrt{y}$	A1		correct differential equation
	$\frac{\mathrm{d}t}{\mathrm{d}t} = -\frac{\mathrm{d}t}{2}$	dM1		separating variables
	$\int \frac{1}{\sqrt{v}} dv = \int -\frac{1}{2} dt $ AG			
	$2\sqrt{v} = -\frac{t}{2} + c$	dM1		integrating
	$t = 0, y = 25 \Longrightarrow c = 10$	A1		correct integrals with or without <i>c</i>
	(22) (22)	dM1		finding the constant of integration
	$v = \left(\frac{20-t}{4}\right)$		-	
	(T)	AI	1	correct final result from correct working
(b)	<i>t</i> = 20	B1	1	correct time
	Total		8	
	TOTAL		75	

Mathematics 6360

MM2B Mechanics 2B

Mark Scheme

2007 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Μ	mark is for method						
m or dM	mark is dependent on one or more M marks and is for method						
А	mark is dependent on M or m marks and is for accuracy						
В	mark is independent of M or m marks and	d is for method	and accuracy				
E	mark is for explanation						
or ft or F	follow through from previous						
	incorrect result	MC	mis-copy				
CAO	correct answer only	MR	mis-read				
CSO	correct solution only	RA	required accuracy				
AWFW	anything which falls within	FW	further work				
AWRT	anything which rounds to	ISW	ignore subsequent work				
ACF	any correct form	FIW	from incorrect work				
AG	answer given	BOD	given benefit of doubt				
SC	special case	WR	work replaced by candidate				
OE	or equivalent	FB	formulae book				
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme				
–x EE	deduct <i>x</i> marks for each error	G	graph				
NMS	no method shown	С	candidate				
PI	possibly implied	sf	significant figure(s)				
SCA	substantially correct approach	dp	decimal place(s)				

Key to mark scheme and abbreviations used in marking

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

MM2B

Q	Solution	Marks	Total	Comments
1(a)	$\frac{1}{2} \times 35 \times v^2 = 35 \times 9.8 \times 10$	M1		Energy method
	2		2	
	$v = 14 \text{ (ms}^{-1}\text{)}$	AI	3	
(b)	Air resistance or friction	B1	1	
(c)	Energy lost =			
	$35 \times 9.8 \times 10 - \frac{1}{2} \times 35 \times 12^2$ (= 910)	M1 A1		Difference attempted ±
	Work done: $F \times 20$ (=910)	m1		
	20F = 910 $F = 45.5(N)$	A1	4	F > 0
	Total		8	
2(a)		B1	1	Arrows + labels, w in centre
(b)	$M(A) \qquad 0.4W = 0.6T_R$	M1		Moments equation
	$T_B = \frac{2W}{3}$	A1		Accept 2 dp
	$\mathbf{D} = 1 1 1 1 1 1 1 1$	M1		each A1
	$\operatorname{Res} + \operatorname{or} M(B) \qquad I_A = \frac{1}{3}$	A1	4	
(c)	Lamina is uniform \Rightarrow weight acts at centre	B1	1	
	Total		6	
3(a)	$mg \ 2a = \frac{1}{2} \ mv^2$	M1 A1		Energy equation
	$v = 2\sqrt{ga}$	A1	3	
(b)	$T - mg = \frac{mv^2}{2a}$	M1 A1		All terms for M1, no component
	T = 3mg	A1F	3	ft if $T > 0$
	Total		6	

Q	Solution	Marks	Total	Comments
4(a)	$(10 \times 40) \rho \times 5 + (10 \times 60) \rho \times 40$	M1		
	$= (10 \times 40 + 10 \times 60) \rho \overline{y}$	M1 A1		
	$\overline{y} = 26 \text{ cm}$	A1	4	
(b)	Symmetry of shape	B1	1	
(c)	$X \xrightarrow{13 \text{ cm}}_{\theta}$ 26 cm	M1		Attempting subtraction leading to 13 cm
	$\tan\theta = \frac{26}{"13"}$	M1 A1		Or inverted, must see 26 Or inverted
	$\theta = 63^{\circ} \tag{63.4}$	A1	4	Accept 117°
	Total		9	
5(a)(i)	$t = 0, \mathbf{r} = 2\mathbf{i} + 10\mathbf{k}$	B1	1	
(ii)	$t = 2\pi, \ \mathbf{r} = 2\mathbf{i} + 7.49\mathbf{k}$	B1	1	Or $\mathbf{r} = 2\mathbf{i} + (10 - 0.8\pi)\mathbf{k}$ accept 7.5k
(iii)	$t=2\pi, \qquad t=4\pi$	B1 B1	2	
(b)	$\mathbf{v} = -2\sin t\mathbf{i} + 2\cos t\mathbf{j} - 0.4\mathbf{k}$	M1 A1 A1	3	Differentiation Trig k
(c)	$\mathbf{a} = -2\cos t \mathbf{i} - 2\sin t \mathbf{j}$ $\mathbf{F} = -50\cos t \mathbf{i} - 50\sin t \mathbf{j}$ $ \mathbf{F} = \sqrt{50^2 \cos^2 t + 50^2 \sin^2 t}$	M1A1 M1 M1		No unit vectors
	$\left \mathbf{F}\right = 50(\mathrm{N})$	A1	5	
	Total		12	

MM2B (con	t)			
Q	Solution	Marks	Total	Comments
6(a)	$\frac{40 \times 2\pi}{60} = \frac{4\pi}{3} \text{ (rad/sec)}$	M1 A1	2	
(b)	$a = \omega^2 r \qquad = \left(\frac{4\pi}{3}\right)^2 \times 0.2$	M1		
	$=\frac{16\pi^2}{45}$	A1	2	Accept $0.356 \pi^2 (3sf)$
(c)(i)	T mg	B1	1	
(ii)	Vertically No acceleration, forces balance $mg = T \cos \theta$	B1	1	
(iii)	Horizontally $T\sin\theta = m \times \frac{16\pi^2}{45}$	M1 A1F		ft acceleration
	$T\cos\theta = mg$	m1		SC $\tan \theta = \frac{\omega^2 r}{g}$ 1 st 3 marks for quoting and using correctly
	$\tan\theta = \frac{16\pi^2}{45g}$			
	$\tan\theta = 0.358(08)$	A1F		ft provided M1
	$\theta = 20^{\circ}$	A1F	5	earned in (b)
	Total		11	

Q	Solution	Marks	Total	Comments
7(a)	Max speed \equiv zero acceleration used	M1		Implied
	$\frac{72000}{60}$	M1		
	$\frac{72000}{60} = k \times 60$ k = 20	A1	3	
(b)(i)	$20v = -500 \frac{\mathrm{d}v}{\mathrm{d}t}$	M1		see $\frac{\mathrm{d}v}{\mathrm{d}t}$, \pm
	$\frac{\mathrm{d}v}{\mathrm{d}t} = -\frac{v}{25}$	A1	2	
(ii)	$25\int \frac{\mathrm{d}v}{v} = -\int \mathrm{d}t$	M1 A1		M1 separating variables
	$\left[25\ln v\right]_{20}^{10} = -\left[t\right]_{0}^{t}$	A1		Alternative $25 \ln v = -t (+ c)$ A1
	$25\ln 10 - 25\ln 20 = -t$	ml Al		$t = 0, v = 20, c = 25 \ln 20$ m1 t = t, v = 10,
	$t = 25 \ln 2$ or 17.3 or $-25 \ln \frac{1}{2}$	A1	6	$t = 25 \ln 10 = -t + 25 \ln 20$ A1 $t = 25 \ln 2$ or 17.3 A1
	Total		11	
8(a)	$2g = \frac{49 \times x}{0.5}$	M1 A1		
	$\frac{x=0.2}{2}$	A1	3	
(b)	EPE = $\frac{49 \times (0.2)^2}{2 \times 0.5}$	M1		
	= 1.96 (J)	A1	2	
(c)(i)	$1.96 = \frac{49 \times x^2}{2 \times 0.5} + 0.8 \times 9.8 \times (0.2 + x)$	M1 A3		All terms attempted for M1 -1 EE from A3
	$x^2 + 0.16x - 0.008 = 0$	A1	5	
(ii)	$x = \frac{0.16 \pm \sqrt{0.16^2 + 4 \times 0.008}}{2}$	M1		
	<i>x</i> = 0.04	A1	2	x = 0.04 only identified
	Total		12	
	TOTAL		75	

Mathematics 6360

MM2B Mechanics 2B

Mark Scheme

2007 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

М	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
А	mark is dependent on M or m marks and is for accuracy					
В	mark is independent of M or m marks and	d is for method	and accuracy			
E	mark is for explanation					
$\sqrt{100}$ or ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within	FW	further work			
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
–x EE	deduct <i>x</i> marks for each error	G	graph			
NMS	no method shown	с	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

Key to mark scheme and abbreviations used in marking

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

MM2B				
Q	Solution	Marks	Total	Comments
1(a)	Kinetic energy = $\frac{1}{2} \times 5 \times 10^2$	M1		Full method
	= 250 J	A1	2	
(b)	Using conservation of energy: KE when box hits ground			
	= Initial KE + Change in potential energy = $250 + 5 \times 30 \times g$	M1 A1ft		Could have sign errors
	= 1720 J	A1	3	AG; SC2 $5 \times 35.1 \times g = 1720$
(c)	$\frac{1}{2}mV^2 = 1720$	M1		
	$V^2 = 688$	A1		
	\therefore Speed is 26.2 m s ⁻¹	A1	3	CAO; accept $\sqrt{688}$ or $4\sqrt{43}$; SC2 26.3
(d)	No air resistance	E1		Or no resistance forces
	Box is a particle	E1	2	Deduct 1 mark for unacceptable third reason
	Total		10	
2(a)	Symmetry of the lamina about PQ	E1	1	Accept 'mirror line'
(b)	Taking moments about <i>AB</i> :			
	600 ho imes 15 + 100 ho imes 35	M1A1		Condone lack of ρ
	$=700\rho\overline{x}$	A1		
	$\bar{x} = 17.857 = 17.9 \mathrm{cm}$	A1	4	SC3 17.8
(c)	$\tan \theta = \frac{10}{17.857}$	M1A1		M1 for use of $tan \theta$
	= 0.56 Angle is 29 2488	M1		
	= 29°	A1	4	
	Total		9	

<u>MM2B (con</u>	t)			
Q	Solution	Marks	Total	Comments
3(a)	Using $F = ma$:			
	$2400\mathbf{i} - 4800t\mathbf{j} = 800\mathbf{a}$	M1		
	$\mathbf{a} = 3\mathbf{i} - 6t\mathbf{j}$	A1	2	
	<u>,</u>			
(b)	$\mathbf{v} = \mathbf{a} dt$	M1		
	$=3t\mathbf{i}-3t^2\mathbf{j}+\mathbf{c}$	A1		Condone no '+ \mathbf{c} '
	3			
	When $t = 0$, $v = 6i + 30j$			
	$\therefore \mathbf{c} = 6\mathbf{i} + 30\mathbf{j}$	M1		Needs ' $+$ c' above
	$\therefore \mathbf{v} = (3t+6)\mathbf{i} + (30-3t^2)\mathbf{j}$	A1	4	AG
	ć			
(c)	$\mathbf{r} = \int \mathbf{v} \mathrm{d}t$	M1		
	(3,2) (3) + (20) (3) + 1	. 1 . 1		
	$=(\frac{-t^{2}+6t}{2})\mathbf{i}+(30t-t^{2})\mathbf{j}+\mathbf{d}$	AI,AI		Al i term, Al j term; condone no $+ d'$
	When $t = 0$, $\mathbf{r} = 2\mathbf{i} + 5\mathbf{j}$			
	$\therefore \mathbf{d} = 2\mathbf{i} + 5\mathbf{j}$	M1		
	:. $\mathbf{r} = (\frac{3}{t^2} + 6t + 2)\mathbf{i} + (30t - t^3 + 5)\mathbf{i}$	A1	5	
	Total	D1	11	
4(a)	Centre of mass of rod is 3 m from river	BI		Use of centre of mass is centre of rod
	Taking moments about A edge of bank:			Or resolve $R = 65\sigma$ B1
	$3 \times 15 = 50x$	M1		Moments about any point (correct) M1
	x = 0.9	A1	3	0.9 A1
(b)	Taking moments about A:			
	$50 \times 2 = 15 \times 3 + m \times 8$	M1A1		M1 3 terms, 2 correct
	55 = 8m	Al		
	$m = 6\frac{7}{2}$			
	8			
	Mass is $6\frac{1}{2}$ kg	A1	4	Accept 6.88 and 6.87
	8			
(c)	Centre of mass of rod is 3 m from river	F1	1	Centre of mass is at centre of rod
	bank	LI	1	
(d)	eg Woman is a particle	E1	1	
	The mass is a particle			
	The plank is a rigid rod			
	Total		9	

MM2B (con	t)			
Q	Solution	Marks	Total	Comments
5(a)	Using conservation of energy (lowest and highest points):	M1		
	$\frac{1}{2}m(7v)^2 = \frac{1}{2}mv^2 + 2mga$	A1A1		A1 for $7v$ and v
	$\frac{48}{2}v^2 = 2ga$	M1		Needs 48 or 24
	$\therefore v = \sqrt{\frac{ag}{12}}$	A1	5	AG
(b)	Velocity at A is $\sqrt{\frac{ag}{12}}$			
	Resolving vertically at A:	M1		3 terms
	$m\frac{v^2}{a} + R = mg$	A1,A1		A1 correct 3 terms, A1 correct signs
	$R = mg - \frac{m}{a} \times \frac{ag}{12}$			$\left(1-\frac{1}{12}\right)mg$ M1A2
	$=\frac{11}{12}mg$	A1	4	Condone $-\frac{11}{12}mg$
	Total		9	
6(a)	EPE is $\frac{\lambda x^2}{2l}$			
	$=\frac{200(0.5)^2}{2\times 2}$	M1		
	= 12.5 J	A1	2	
(b)	When string becomes slack,			
	using $\frac{1}{2}mv^2 = \text{loss in EPE:}$	M1		NB Using $\sqrt{5}$ to answer (a) and thus (b) \Rightarrow no marks
	$\frac{1}{2} \times 5 \times v^2 = 12.5$	A1		
	Speed is $\sqrt{5} \text{ m s}^{-1}$	A1	3	AG
(c)	Resolving vertically, $R = 5g$	B1		
	$F = \mu R$	MI		
	$0.4 \times 5g = 2g$ Using change in energy = work done:	MI		
	$2g \times 0.5 =$	M1		M1 for force \times distance
	$\frac{1}{2} \times 5 \times \left(\sqrt{5}^2\right) - \frac{1}{2} \times 5 \times v^2$	A1,A1		A1 first term (or 12.5) A1 second term (inc –)
	$9.8 = 12.5 - \frac{5}{2}v^2$			
	$v^2 = 1.08$ Speed is 1.04 m s ⁻¹	Δ 1	7	
	Total		12	
L	- •••••	1		1

MM2B (con	t)				
Q	Solution		Marks	Total	Comments
7(a)	Using $F = ma$:				
	$-\lambda mv = ma = m \frac{\mathrm{d}v}{\mathrm{d}t}$		M1		Condone no '–'
	$\therefore \frac{\mathrm{d}v}{\mathrm{d}t} = -\lambda v$		A1	2	AG Note: no use of $m \Rightarrow$ no marks in (a)
(b)	$\int \frac{\mathrm{d}v}{v} = -\lambda \int \mathrm{d}t$		M1		
	$\ln v = -\lambda t + c$ $v = C e^{-\lambda t}$		A1		Needs '+ c '
	When $t = 0, v = U \implies C = U$		M1	4	Needs correct working
	$v = U e^{\pi i t}$	TAL	AI	4	AG
9 (a)	Q ig in aquilibrium	l otal	E1	6	O at rest, or not maying
δ(a)	T = 5g = 49 N		B1	2	AG
(b)	Resolving vertically for P:				
	$T\cos\theta = 3g$ $\cos\theta = \frac{3}{5}$		M1A1		
	$\theta = \cos^{-1}\frac{3}{5} = 53.1^{\circ}$		A1	3	Do not condone 53°
(c)	$\therefore \sin \theta = \frac{4}{5}$		B1		
	Resolving horizontally for <i>P</i> :				
	$\frac{mv^2}{r} = T\sin\theta$		M1A1		M1 2 terms: 1 term correct, other term includes sin or cos
	$\frac{3v^2}{r} = \frac{4}{5} \times 5g$				
	$\frac{3 \times 4^2}{r} = 4g$				
	$r = \frac{48}{4}$				
	4g - 1.22		Α 1	Λ	SC2 1 22
	- 1.22	Total	AI	4	
				75	
		IUIAL		13	

Mathematics 6360

MM2B Mechanics 2B

Mark Scheme

2008 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX Dr Michael Cresswell Director General

Key to mark scheme and abbreviations used in marking
--

М	mark is for method				
m or dM	mark is dependent on one or more M marks and is for method				
А	mark is dependent on M or m marks and is fo	or accuracy			
В	mark is independent of M or m marks and is t	for method and a	iccuracy		
E	mark is for explanation				
\sqrt{or} ft or F	follow through from previous				
	incorrect result	MC	mis-copy		
CAO	correct answer only	MR	mis-read		
CSO	correct solution only	RA	required accuracy		
AWFW	anything which falls within	FW	further work		
AWRT	anything which rounds to	ISW	ignore subsequent work		
ACF	any correct form	FIW	from incorrect work		
AG	answer given	BOD	given benefit of doubt		
SC	special case	WR	work replaced by candidate		
OE	or equivalent	FB	formulae book		
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme		
–x EE	deduct <i>x</i> marks for each error	G	graph		
NMS	no method shown	с	candidate		
PI	possibly implied	sf	significant figure(s)		
SCA	substantially correct approach	dp	decimal place(s)		

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

MM2B				
Q	Solution	Marks	Total	Comments
1(a)	Kinetic energy = $\frac{1}{2} \times 0.6 \times 15^2$	M1		
	= 67.5 J	A1	2	
(b)	Using $mgh = \frac{1}{2}mv^2$:	M1		
	$67.5 = 0.6 \times g \times h$	A1		
	$\Rightarrow h = \frac{67.5}{5}$			
	0.6g			
	= 11.5 m	A1	3	
(c)	When 3 m above ground level:			
	Change in PE is $0.6 \times g \times 3$			
	= 17.64 J			
	: KE of ball is $67.5 - 17.64$	M1		
	= 49.86 J	AI		
	Speed of ball is $\sqrt{\frac{49.86}{\frac{1}{2} \times 0.6}}$	m1		Dep on M1
	$= 12.9 \text{ m s}^{-1}$	A1	4	No KE given: speed = 12.9 SC3
(d)	eg ball is a particle, no air resistance,	E1	1	Accept no spin, no wind
	weight is the only force acting etc		10	
	Total		10	
2(a)(i)	$a = \frac{\mathrm{d}v}{\mathrm{d}t} = 6t - 6\cos 3t$	M1A1	2	M1 for at least one term correct
(ii)	When $t = \frac{\pi}{2}$, $a = 6 \times \frac{\pi}{2} - 6\cos(3, \frac{\pi}{2})$	M1		
	3' 3 3'	A 1	2	
	$=2\pi+6$	AI	2	AG
(b)	$r = t^3 + \frac{2}{3}\cos 3t + 6t + c$	M1A1		M1 for 3 terms including $\cos 3t$ term Condone no '+ c'
	When $t = 0, r = 0 \therefore c = -\frac{2}{3}$	M1		
	:. $r = t^3 + \frac{2}{3}\cos 3t + 6t - \frac{2}{3}$	A1	4	
	Total		8	

Q	Solution	Marks	Total	Comments
3 (a)	$\rightarrow s$	B2	2	B1 for any 4 correct
	$\backslash c$			
	Ň			
	80 g			
	- A			
	20 g			
	60°			
	1.44 <u>0</u> .1			
(b)	Resolve vertically: P = 20a + 80a			Must see $20a + 80a$ or $100a$ to obtain any
	$\mathbf{K} = 20\mathbf{g} + 80\mathbf{g}$			marks in (b) $rac{20g + 80g of 100g to obtain any}{racks in (b)}$
	= 100 <i>g</i>	B1		
	Using $F = \mu R$: $F = 0.4 \times 100 \sigma$	ml		Dep on B1
	= 40g or 392 N	A1	3	AG
(0)	S = 40g	B1		
	Moments about A:			
	$80gx\cos 60 + 20g.2\cos 60$	M1A1		M1 for 3 terms, all moments
	40gx + 20g = 138.56g	Π		
	$x = \frac{118.56}{100}$	m1		Dep on M1
	40			_ 1
	= 2.96 m	A1	6	Accept $2\sqrt{3} - \frac{1}{2}$
	Total		11	
4 (a)	$\mathbf{v} = \frac{\mathrm{d}r}{\mathrm{d}t}$			
	$\mathbf{v} = (3t^2 - 6t)\mathbf{i} + (4 + 2t)\mathbf{j}$	M1A1	2	
(b)(i)	a = (6t - 6)i + 2i	M1		
(0)(1)	$\mathbf{a} = (0t - 0)\mathbf{i} + 2\mathbf{j}$	Alft		
	Using $\mathbf{F} = \mathbf{ma}$: $\mathbf{F} = (194 - 193) + 63$	A 1.f+	2	
	$\mathbf{r} = (10l - 10)\mathbf{i} + 0\mathbf{j}$	AIII	3	
(ii)	When $t = 3$, $\mathbf{F} = 36\mathbf{i} + 6\mathbf{j}$			
	Magnitude is $\sqrt{36^2 + 6^2}$	M1		
	= 36.5	A1ft	2	Accept $6\sqrt{37}$; ft from (b)(i)
(c)	When F acts due north:			
	Component of F in the i direction is 0	M1		
	18t - 18 = 0 $t = 1$	A1ft	2	ft from (b)(i)
		•		

MM2B (cont	t)	1	I	1
Q	Solution	Marks	Total	Comments
5(a)	Acceleration is $\frac{v^2}{v}$			
C(u)	r			
	$=\frac{2^2}{2}$	M1		
	0.2 -2 -2	. 1	2	
	$= 20 \text{ m s}^{-1}$	AI	2	
	$\rho = 20^{\circ}$	R 1		
(0)	$\sigma = 50$ Resolve vertically:	DI		
	$T_1 \cos \theta - mg$	M1		
	$T_1 \cos \theta = 4g$	A1		
	$T_1 = 45.3 \text{ N}$	A1	4	AG
(c)	Resolve horizontally:			
	$T_1 \sin \theta + T_2 - \frac{mv^2}{m^2}$	M1A1		M1 for 3 terms 2 correct
	$r_1 \sin \theta + r_2 = \frac{r}{r}$	WIIAI		WI for 5 terms, 2 correct
	$45.3\sin\theta + T_2 = 4 \times 20$			
	$T_2 = 57.4 \text{ N}$	A1	3	Condone 57.3 N
	Total		9	
6(a)	$EPE = \frac{\lambda x^2}{2k}$			
	2l			
	$=\frac{300\times(1.5)^2}{100}$	M1		
	2×4			
	= 84.375	A 1	2	
	= 84.4 J	AI	2	
(b)	When string is slack gain in PE is mah			
(0)	$= 6 \times g \times 15 \sin 30$	M1		
	= 44.1 J	Al		
	KE = EPE - gain in PE	m1		
	= 84.375 - 44.1			
	=40.275	A1		
	$\frac{1}{6}v^2 = 40.275$			
	$\frac{-10.1}{2}$ - 40.273			
	v = 3.66	A1	5	AG
(c)	At A , PE gained above initial position is			
	$6 \times g \times 5.5 \sin 30$	D 1		Or PE above position string slack is 117.6
	= 101./J This is more than initial electric material	BI		KE at A 18 $-1/.3$
	i ilis is more than initial elastic potential	ВI		
	• narticle will not reach 4	F1	3	Or
	·· particle will not reach?i		5	Using $v^2 = u^2 + 2as$
				a = 0.5g B1
				s = 1.37 or 1.366 B1 for 2.87 above
				starting point
				Hence stops before A E1
				Vertical height above sling slack is 0.683
				Vertical height above starting point is
				1.435
	Total		10	

MM2B (con	MM2B (cont)							
Q	Solution	Marks	Total	Comments				
7(a)	Conservation of energy:							
	$\frac{1}{2}m\left(3\sqrt{ag}\right)^2 + mg2a = \frac{1}{2}mv^2$	M1A1		M1 for 3 terms: 2 KE and PE				
	$\frac{9}{2}mga + 2mga = \frac{1}{2}mv^2$	A1						
	$v = \sqrt{13ag}$	A1	4					
(b)	At A, consider vertical forces:							
	$T - mg = \frac{mv^2}{a}$	M1A1		M1 for 3 terms, 2 correct				
	T = mg + 13mg	m1						
	T = 14mg	A1ft	4	ft from (a)				
	Total		8					
8 (a)	Power of engine is 8kW							
	\therefore Force exerted by engine $=\frac{8000}{v}$	M1A1		M1 for Power = Fv				
	Using $F = ma$:	m1						
	$\frac{8000}{v} - kv^2 = 600\frac{\mathrm{d}v}{\mathrm{d}t}$							
	$600\frac{dv}{dt} - \frac{8000}{v} + kv^2 = 0$	A1	4	AG				
(b)(i)	When engine is turned off, power is zero:							
	$-kv^2 = 600 \ \frac{\mathrm{d}v}{\mathrm{d}t}$	B1	1	AG				
(ii)	$\int 600 \frac{\mathrm{d}v}{v^2} = -\int k \mathrm{d}t$	M1						
	$-\frac{600}{v} = -kt + c$	A1		Need '+ c '				
	When $t = 0$, $v = 20$:							
	$\therefore c = -\frac{600}{20} = -30$	A1						
	$\therefore \frac{600}{v} = kt + 30$							
	When $v = 10$, $kt = 30$:	M1						
	$\therefore t = \frac{30}{L}$	A1	5	$-\frac{30}{L}$ SC3				
	K Total		10	К				
			75					
	IUIAL		13					

Mathematics 6360

MM2B Mechanics 2B

Mark Scheme

2008 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX Dr Michael Cresswell Director General

Key to mark scheme and abbreviations used in marking

Μ	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
А	mark is dependent on M or m marks and is for accuracy					
В	mark is independent of M or m marks and is for method and accuracy					
Е	mark is for explanation					
\sqrt{or} ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within	FW	further work			
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
–x EE	deduct <i>x</i> marks for each error	G	graph			
NMS	no method shown	с	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.
Q	Solution	Marks	Total	Comments
1(a)	$a = \frac{\mathrm{d}v}{\mathrm{d}t} = 12t + 4$	M1 A1	2	
	d <i>t</i>			
(b)	Using $F = ma$.			
	Force $= 3 \times (12t + 4)$	M1		
	When $t = 4$, force = 3 (12 × 4 + 4)		•	
	Force = 156 N	Al	2	
(c)	$r = 2t^3 + 2t^2 - 7t + c$	M1 A1		
	When $t = 0$, $r = 5$, $\therefore c = 5$	M1		
	$\therefore r = 2t^3 + 2t^2 - 7t + 5$	A1	4	SC3 if no '+ c ' seen
	Total		8	
2(a)	$\uparrow T_A$ $\uparrow T_B$	B1	1	
	\overrightarrow{A} $\overrightarrow{40e}$ \overrightarrow{B}			
(b)	Taking moments about A			
~ /	$2.1 \times 40g = T_B \times 4$	M1 B1		B1 for 2.1
	$T_B = 21 \mathrm{g}$	A1	3	
(c)	Pasolve vertically $T_{c} + T_{c} = 40 a$	M1		
(0)	$T_A = 19g$ or 186 N	A1	2	
(d)	Gravitational force acts through mid point	E1	1	
	Total		7	
3	\overline{x} 25×1+12×4+4×5		-	
	X =	M1		Two terms on top correct (+third) and
	02			denominator correct
	$=\frac{93}{10}$ or 9.3	A1		
	$\overline{Y} = \frac{10 \times 1 + 7 \times 4 + 18 \times 5}{12}$	M1		
	10			
	$=\frac{120}{10}$ or 12.8	A1	4	SC3 for interchanged \overline{X} and \overline{Y}
	: Centre of mass is at $(0, 2, 12, 8)$			
	Cenue of mass is at (7.3, 12.0)		1	
	Total		4	

MM2B (con	t)	I = -		-
Q	Solution	Marks	Total	Comments
4(a)	Using power = force \times velocity			
	Power = $(40 \times 50) \times 50$	M1		
	$\therefore = 100,000$ watts	A1	2	
(b)	When speed is 25,			
	max force exerted is $\frac{100000}{100000}$			
	25			
	= 4000N	B1		
	∴ Accelerating force is 3000N			
	Using $F = ma$			
	3000 = 1500 a	M1		Need 3 terms eg '4000' $\pm 1000 = ma$
				or $2000 \pm 1000 = ma$
				M0 for $1000 = ma$
	$a = 2 \text{ ms}^{-2}$	A1	3	
(c)	When van is at maximum speed			
	force against gravity is mgsin 6 (parallel	B1		
	to slope)			
	Force against gravity and resistance is			
	$mg\sin 6 + 40 v$	M1		
	= 1536.6 + 40 v	A1		
	Speed is maximum			
	when $1536.6 \pm 40 v = 100000$	M1		For 3 terms: 100000 and 1 other term
	when $1330.0 + 40v = 1000000000000000000000000000000000000$	1011		$\frac{1}{v}$ and $\frac{1}{v}$ other term
				correct
	$40 v^2 + 1536.6 v - 100 000 = 0$	A1		CAO
	Speed is 34.4 ms^{-1}	A1	6	
	Total		11	
5(a)	dr			
	$\mathbf{v} = \frac{1}{\mathbf{d}t}$			
			_	
	$\mathbf{v} = -2 \sin \frac{1}{4} t \mathbf{i} - 2 \cos \frac{1}{4} t \mathbf{j}$	M1 A1	2	No i, j: no marks
(b)	1 . 1 . <u>1</u>			
(~)	Speed is $\{(-2\sin\frac{1}{4}t)^2 + (-2\cos\frac{1}{4}t)^2\}^2$	M1		
	4 4			
	$-2\left(\sin^2\frac{1}{2}t + \cos^2\frac{1}{2}t\right)^{\frac{1}{2}}$	m1		clear use of $\sin^2\theta + \cos^2\theta = 1$
	$= 2 \left(\sin \frac{1}{4} i + \cos \frac{1}{4} i \right)$			
	= 2 which is a constant	A1	3	Use of 2 values SC1
(c)	Magnitude of r is			
	$((0,, 1,)^2 + (0,, 1,)^{\frac{1}{2}}$			
	$\{(8\cos\frac{1}{4}t)^2 + (8\sin\frac{1}{4}t)^2\}^2$	M1		$\mathbf{a} = -k\mathbf{r} \Rightarrow \text{circle} \text{SC2}$
	9 milion is a constant	A 1	2	
	$= \delta$ which is a constant	AI	2	
	Farticle is moving in a circle			1
(d)	Using $v = a\omega$	M1		M1 for their $\stackrel{b}{-}$ if both found
				C
	Angular speed is 0.25	A1	2	
(e)	$a = -\frac{1}{\cos \frac{1}{2}t} i + \frac{1}{\sin \frac{1}{2}t} i$	M1 A1	2	
			2	
(f)	Magnitude of acceleration is $\frac{1}{2}$	B1	1	
	2		-	
	Total		12	

MM2B (cont)

Q	Solution	Marks	Total	Comments
6(a)	Using $F = ma$			
	$-0.05mv = m \frac{\mathrm{d}v}{\mathrm{d}v}$			
	dt	D 1	1	
	$\therefore \frac{\mathrm{d}v}{\mathrm{d}t} = -0.05v$	BI	1	Need to see <i>m</i> terms
	ů,			
(b)	f dv f			
	$\int \frac{dt}{v} = -\int 0.05 dt$	B1		
	$\ln v = -0.05t + c$	M1		Need first 2 terms
	$v = C e^{-0.05t}$			
	When $t = 0, v = 20$,			
	$\therefore C = 20$	M1		fully correct solutions
	$v = 20e^{-0.05t}$	A1	4	fully contect solutions
				-
(c)	When $v = 10$, $10 = 20e^{-0.05t}$	M1		
	$e^{0.05t} = 2$	A1		
	$\therefore t = \frac{1}{\ln 2}$			
	0.05		-	
	= 13.9	Al	3	Accept 20 ln 2
7(2)	10tal		8	
/(a)	At top, for complete revolutions: $\frac{2}{2}$			
	$\frac{mv^2}{a} = mg$ where v is speed at top	M1		
	u $v^2 = ac$	A 1		
	$\dots v = ug$ Conservation of energy from <i>B</i> to ton :	AI		
		M1		3 terms, 2 KE and PE
	$\frac{1}{2}mv^2 + mg2a = \frac{1}{2}mu^2$	A1		- · · · · · · ·
	$u^2 - Aaa + v^2$			
	$u = -\pi ug + v$			
	= 5ug	A 1	5	
	$u - \sqrt{3}ug$	AI	5	
		D1		
(0)	At C, speed of particle is $\sqrt{3ag}$	BI		
	Resolving horizontally at C :	M 1		
	$T = \frac{mv^2}{mv^2}$	MI		Needs 2 correct terms
	a 2			
	$T = m \frac{3ag}{a}$			
	u T - 3mg	Δ1	3	
	1 – Jing	111	5	
(c)	No air resistance	B1	1	
	Bead is a particle			
	Total		9	

MM2B (cont)

Q	Solution	Marks	Total	Comments
8 (a)	Work done = $\int_{-\infty}^{e} \frac{\lambda x}{l} dx$	M1		
	$= \left[\frac{\lambda x^2}{2l}\right]_0^e$	A1		Needs limit of 0
	$= \frac{\lambda e^2}{2l}$ Or	A1	3	AG
	Area under a straight line = average force × distance = $\frac{\lambda e^2}{\lambda t}$			
(b)(i)	Using $T = \frac{\lambda x}{l}$			
	$5g = \frac{150 \times x}{0.6}$	M1		
(ii)	Extension is 0.196 m	Al	2	
	$EPE = \frac{2k}{2l}$ $150 \times (0.3)^2$	M1		
	$= \frac{2 \times 0.6}{2 \times 0.6}$ $= 11.25 \text{ J}$	A1	2	
(iii)	When <i>x</i> above <i>P</i> ,			
	EPE = $\frac{150 \times (0.3 - x)^2}{2 \times 0.6}$	M1		for $\frac{150 \times (x)^2}{2 \times 0.6}$
	PE[relative to P] = $(-)5 \times g \times x$	M1		for $5 \times g \times \text{distance}$
	KE + EPE [at new point] = EPE [at P] – gain in PE $\frac{1}{2}mv^{2} + \frac{150 \times (0.3 - x)^{2}}{2 \times 0.6} =$	M1		4 terms, all signs correct, 2 terms correct
	$\frac{150 \times (0.3)^2}{2 \times 0.6} - 5gx$	A1		
	$\frac{1}{2}mv^2 + \frac{150 \times (x^2 - 0.6x)}{2 \times 0.6} = -5gx$	m1		Equation involving terms in v^2 , x^2 and x only
	$\frac{1}{2} \cdot 5 \cdot v^2 + 125 x^2 - 75 x = -49x$ $v^2 = 10.4x - 50 x^2$	Δ1	7	
	$V = 10.4\lambda = 50\lambda$	711	,	
(iv)	Particle is at rest when $v = 0$ $10.4x - 50 x^2 = 0$ x = 0 [not required]	M1		
	Or $x = \frac{10.4}{50} = 0.208$ m above <i>P</i> .	A1	2	
	Total		16	
	TOTAL		75	

General Certificate of Education

Mathematics 6360

MM2B Mechanics 2B

Mark Scheme

2009 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

Μ	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
А	mark is dependent on M or m marks and is for accuracy					
В	mark is independent of M or m marks and is for method and accuracy					
E	mark is for explanation					
\sqrt{or} ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only RA required accuracy					
AWFW	anything which falls within	FW	further work			
AWRT	anything which rounds to	ing which rounds to ISW ignore subsequent work				
ACF	any correct form FIW from incorrect work					
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
–x EE	deduct <i>x</i> marks for each error	G	graph			
NMS	no method shown	c	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MM2B				
Q	Solution	Marks	Total	Comments
1	$r = \int v \mathrm{d}t$	M1		
	$=t^{4} + 4\cos 2t + 5t \ (+c)$	A1		
	When $t = 0$, $r = 0 \implies c = -4$	M1		Finding c correctly
	$\therefore r = t^4 + 4\cos 2t + 5t - 4$	A1ft	4	
	Total		4	
2(a)	Initial KE = $\frac{1}{2}mv^2$			
	$=\frac{1}{2}$ × 6 × 12 ²	M1		Allow one of <i>m</i> and <i>v</i> incorrect
	= 432 J	A1	2	
(b)(i)	When it hits the ground, conservation of energy gives KE = Initial KE + loss in PE			
	$= 432 + 6 \times g \times 4$ = 667.2	M1		Need $6 \times g \times 4$ or 235.2
	= 667 J (3 sf)	A1	2	AG
(ii)	$667.2 = \frac{1}{2} \times 6 \times v^2$	M1A1		
	Speed is 14.9 m s^{-1}	A1	3	
(iii)	Stone is a particle	B1		Not g constant
. ,	No air resistance	B1	2	No other forces acting
	Total		9	

				a
Q	Solution	Marks	Total	Comments
3(a)	$\mathbf{v} = \frac{\mathbf{d}\mathbf{r}}{\mathbf{d}t}$	M1		
	$-\frac{1}{2}t$ $(2t)$	A1		i terms
	$\mathbf{v} = (e^2 - 8)\mathbf{i} + (2t - 6)\mathbf{j}$	A1	3	j terms
				3
(b)(i)	When $t = 3$, $v = -3.52i$	B1		Accept $(e^{\frac{3}{2}}-8)i$
	Speed is 3.52 m s^{-1}	B1	2	3.5 does not give 2 nd B mark
(ii)	West	B1	1	
	. 1			
(c)	$\mathbf{a} = \frac{1}{2} \mathbf{e}^{\mathbf{z}^t} \mathbf{i} + 2\mathbf{j}$	M1A1		
	2			
	When $t = 3$, $\mathbf{a} = \frac{1}{2}e^{\overline{2}}\mathbf{i} + 2\mathbf{j}$ or $2.24\mathbf{i} + 2\mathbf{j}$	A1	3	
	2			
(d)	Using $\mathbf{F} = m\mathbf{a}$:	M1		Accept $\mathbf{F} = 7\mathbf{a}$
	$\mathbf{F} = 7 (1, \frac{3}{2}; 7; 7)$			_
	$\mathbf{F} = 7(\frac{1}{2}\mathbf{e}^2\mathbf{I} + 2\mathbf{j})$			
	∴ Magnitude of force is			
	$7\left((\frac{1}{2}e^{\frac{3}{2}})^2+2^2\right)^{\frac{1}{2}}$	M1		
	(2)			
	$\mathbf{F} = 21.025$	A1	3	Accept 21
	Total		12	*
4(a)	Taking moments about AD:			
	$8 \times 10 + 2 \times 15 = 10 \overline{x}$	M1A1		M1 for moments and 1 term on left
	110			correct and 1 term on right
	$\bar{x} = \frac{110}{10}$			
	= 11 cm	A1	3	
	_	D 1	1	
(b)	5 cm	BI	1	
	(a) - 10			14
(c)	$(\tan) \theta = \frac{1}{5}$ ie $\frac{(\alpha)^{-10}}{(b)}$	M1		From areas; $\frac{1.7}{5} \Rightarrow \theta = 15.6$ or 15.7
	= 0.2	A1ft		5
	Angle is $\tan^{-1}(0.2)$	M1		
	= 11.3°	A1ft	4	
(b)	Centre of mass is at middle of lamina	E1	1	
(u)	Total		9	

MM2B (con				
Q	Solution	Marks	Total	Comments
5(a)	40 revolutions per minute			
	$= 80\pi$ radians per minute	B1		or $\frac{2}{-}$ rev per second
	.			3
	$=\frac{4\pi}{2}$ radians per second	B1	2	AG
	3			
(b)	Resolve vertically:			
	$T\cos 30 = 6g$	M1A1		M1 1 term each side, 1 correct
	T = 67.9 N	A1	3	AG
(c)	Resolve horizontally:	M 1		
	$T\sin 30 = m\omega^2 r$			MI I term each side, I correct
	(AI		
	$67.9\sin 30 = 6 \times r \times \left(\frac{4\pi}{3}\right)$	A1		A1 RHS
	r = 0.322 m	A1	4	Condone 0.323 (using π as 3.14)
	Total		9	
6(a)	At maximum speed,			
	tractive force = resistance force	M1		
	Using power = force \times velocity:			
	$800\ 000 = F \times 40$	M1		
	$F = 20\ 000\ N$	A1	3	
(b)	Using force x distance – work done –			
	change in energy:			
		M1		M1 $Fs =$ change of KE
	$20\ 000\ s = \frac{1}{2} \times 60\ 000 \times (40^2 - 36^2)$	A1		A1 2 of 3 terms correct
	2	A1		A1 all 3 terms correct
			4	
	Distance = 456 m	Al	4	
		N /1	/	
7(a)	$\frac{1}{2}mv^2 = \frac{1}{2}m \times 8^2 - mg^2$			MI 5 terms, 2 KE and I PE
		AI		
	$v^2 = 64 - 39.2$			
	= 24.8			
	y = 4.98	A1	3	Accept $\sqrt{24.8}$
			-	P- 1
(b)	Using $F = ma$ radially:			
	$R = ma \cos 60 \pm \frac{mv^2}{2}$	M1		M1 3 correct terms (not necessarily
	$K - mg\cos\theta + \frac{r}{r}$	A1		correct signs)
		B1		B1 for 60°
	$= 6g\cos 60 + \frac{6 \times 24.8}{100}$			
	4		4	
	= 66.6 N	Al	4	
	Total		- 7	

	lj Solution	Morke	Total	Comments
		IVIAI'KS	Total	
8 (a)	Using $F = ma$:	D.1		
	$-0.08v^2 = 0.05a$	BI		
	$\therefore \frac{\mathrm{d}v}{\mathrm{h}} = -1.6v^2$	B1	2	AG; condone sign error in first B1
	dt			
	c.d., c			
(b)	$\int \frac{\mathrm{d}v}{v^2} = -1.6 \int \mathrm{d}t$	M1		
	1			1 1
	$-\frac{1}{v} = -1.6t (+ c)$	A1		Condone $-\frac{1}{v} = -1.6t + c \Rightarrow \frac{1}{v} = 1.6t + c$
	r 1			V V
	When $t = 0$, $v = 3 \implies c = -\frac{1}{2}$	M1		
	5			
	$\frac{1}{v} = \frac{1}{3} + 1.6t$ *	A1		
	1 1 8			
	$\frac{1}{v} = \frac{1}{3} + \frac{5}{5}t$			
	1 - 5 + 24t			
	$\overline{v} = \overline{15}$			
		A 1	5	ACt all working lines correct from *
	$V = \frac{1}{5+24t}$	AI	5	AG, an working lines correct from '
	Total		7	
9 (a)	When acceleration is zero,			
	tension = gravitational force			
	$\frac{784x}{1} = 80g$	M1		Both terms correct
	16			
	$x = 16, x + 16 = 32 \mathrm{m}$	A1		A1 for $x=16$
	Length of cord is 32 m	A1	3	
	XX 71 1 1			
(D)(1)	when bungee jumper comes to rest,			
	$EPE = \frac{784 \times x^2}{2 \times 16}$	M1		
	2×10			
	$=\frac{49x}{2}$			
	2			$O_{r} = 20 \times a \times 65 (20 \times 61 \times 61)$
	Change in $PE = 80 \times g \times (16 + x)$	M1		$OI 80 \times g \times 03 = (80g[10+x])$
				(or 80g(49-x))
	$49x^2 = 80 \times 0.8 \times (16 \times 10^{3})$	A 1		
	$\frac{1}{2} = 80 \times 9.8 \times (16 + x)$	AI		
	$x^2 = 32x + 512$			
	$x^2 - 32x - 512 = 0$	A1	4	AG
	$32 \pm \sqrt{32^2 \pm 2048}$			
(ii)	$x = \frac{52 \pm \sqrt{52} + 2040}{2}$	M1		
	x = 43.7128	A1		
	Distance below point of jump is			
	43.7 + 16 = 59.7 m			
	Distance between jumper and ground is			
	65 – 59.7	M1		
	= 5.29 m	Al	4	Accept 5.287, 5.3
	Total		11	
	TOTAL		75	

General Certificate of Education

Mathematics 6360

MM2B Mechanics 2B

Mark Scheme

2009 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Μ	mark is for method				
m or dM	mark is dependent on one or more M marks and is for method				
А	mark is dependent on M or m marks and is for accuracy				
В	mark is independent of M or m marks and is for method and accuracy				
E	mark is for explanation				
\sqrt{or} ft or F	follow through from previous				
	incorrect result	MC	mis-copy		
CAO	correct answer only	MR	mis-read		
CSO	correct solution only RA required accuracy				
AWFW	anything which falls within	FW	further work		
AWRT	anything which rounds to ISW ignore subsequent work				
ACF	any correct form FIW from incorrect work				
AG	answer given	BOD	given benefit of doubt		
SC	special case	WR	work replaced by candidate		
OE	or equivalent	FB	formulae book		
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme		
-x EE	deduct x marks for each error	G	graph		
NMS	no method shown	c	candidate		
PI	possibly implied	sf	significant figure(s)		
SCA	substantially correct approach	dp	decimal place(s)		

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a)	$\mathbf{a} = \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = (3t^2 - 15)\mathbf{i} + (6 - 2t)\mathbf{j}$	M1A1 A1	3	A1 (i terms) A1 (j terms)
(b)(i)	Using $\mathbf{F} = m\mathbf{a}$:			
	Force = $4 \times \{ (3t^2 - 15)\mathbf{i} + (6 - 2t)\mathbf{j} \}$	M1		
	$=(12t^2-60)\mathbf{i}+(24-8t)\mathbf{j}$	A1	2	AG
(ii)	When $t = 2$, force $= -12\mathbf{i} + 8\mathbf{j}$	M1A1		
	Magnitude of force = $\sqrt{12^2 + 8^2}$ N	M1		
	= 14.4 (N)	A1	4	
	Total		9	
2(a)	$KE = \frac{1}{2} \times 55 \times 3^2$	M1		
	= 247.5 J	A1	2	
(h)	Change in PE as slides down:			
(~)	$mgh = 55 \times 9.8 \times 20 \cos 30$	M1		Need cos 30 or sin 30
	=9335.7	A1		
	Using Conservation of Energy:			
	KE at end of slide $= 247.5 + 9335.7$	m1		'a' + '9335.7'
	=9580 J	AI		accept 9583
	Speed of Anne is $\sqrt{\frac{9583}{\frac{1}{2} \times 55}}$	m1		
	$= 18.7 \text{ m s}^{-1}$	A1	6	
(c)	Anne is a particle; no air resistance	E1	1	
	Total		9	

MM2B (con	t)			
Q	Solution	Marks	Total	Comments
3(a)	B S			
	A Resolve vertically: R = 22g + 90g = 112g	B1		
	Using $F = \mu R$:	M1		
	F = 0.6R $F = 0.6 \times 112g$	A1		Needs $0.6 \times 112g$ or 0.6×1097.6 NOT 0.6×1097 unless 658.56 seen
	= 67.2g or $658.56F = 659$ N	A1	4	AG (659 must be shown from correct working)
(b)	Resolve horizontally: S = F	B1		
	Moments about A: $90g \times 5 \times \cos \theta + 22g \times 3 \times \cos \theta$ $= 67.2g \times 6 \times \sin \theta$ $450g + 66g = 403.2g \tan \theta$	M1A1 A1		M1 (one term, force \times distance \times cos or sin)
	$\tan \theta = \frac{516}{403.2}$ $\theta = 52.0^{\circ}$	A1	5	accept 52 Alternative : or moments about <i>B</i> : M1 A2, 1 or 0 for four-term moment equation + M1 for rearranging etc (dep on 4 term) + A1 for answer
	Total		9	

QSolutionMarksTotalComments4(a)Resolving vertically: $T \cos 60 + T \cos 40 = mg$ $1.266 T = 6g$ $T = 46.4 N$ M1A1 A14AG no marks if g deleted(b)Radius of circle is 0.6 tan 60 Horizontally: $\frac{mv^2}{r} = T \cos 50 + T \cos 30$ $1.039 =$ B1 or 70.01 $r = 1.039$ or 1.04 $\frac{6v^2}{r} = \frac{46.4 \cos 50 + 46.4 \cos 30}{1.039} =$ $v^2 = 12.123$ Speed is 3.48 m s^{-1} A14 $\frac{7}{r^2} = 12.123$ Speed is 3.48 m s^{-1} A14 $\frac{100000}{r^2} = \frac{1600000}{1.039} = \frac{10000}{1.039} = \frac{10000}{1.039} = \frac{10000}{1.039} = \frac{100000}{1.039} = \frac{100000}{1.03$		() Sal4'an	Marl	T-4-1	Commante
4(a)Resolving vertically: $T \cos 60 + T \cos 40 = mg$ $1.266 T = 6g$ $T = 46.4 N$ M1A1 		Solution	Marks	Total	Comments
$\begin{array}{ c c c c c c } \hline I & \cos 40 = mg \\ 1.266 T = 6g \\ T = 46.4 N \\ \hline M1 \\ A1 \\$	4(a)	Resolving vertically:	X 1 + 1		
$\begin{bmatrix} 1.266 T = 6g \\ T = 46.4 \text{ N} \\ A1 \\ A$		$T\cos 60 + T\cos 40 = mg$	MIAI		
(b) Radius of circle is 0.6 tan 60 Horizontally: $\frac{mv^2}{r} = T\cos 50 + T\cos 30$ M1 $\frac{6v^2}{r} = T\cos 50 + T\cos 30$ M1 $\frac{6v^2}{r} = 1.039 \text{ or } 1.04$ Accept sin instead of cos for M1 $\frac{6v^2}{1.039} = 46.4\cos 50 + 46.4\cos 30$ A1 $\frac{6v^2}{1.039} = 46.4\cos 50 + 46.4\cos 30$ A1 $\frac{1}{v^2} = 12.123$ Speed is 3.48 m s ⁻¹ Total 8 5 Force acting against gravity is $mg \sin \theta$ Force acting against gravity and resistance is $mg \sin \theta + 200000$ $= 600000g \sin \theta + 200000$ $= 347000$ A1 Using power = force × velocity $= 347000 \times 24$ A1 $= 347000 \times 24$ A1 = 8330 kW A1 6 6 6 6 6 6 6 6		1.266 T = 6g	MI		
(b) Radius of circle is 0.6 tan 60 Horizontally: B1 $r = 1.039 \text{ or } 1.04$ $\frac{mv^2}{r} = T \cos 50 + T \cos 30$ M1 Accept sin instead of cos for M1 $\frac{6v^2}{r} = 46.4 \cos 50 + 46.4 \cos 30$ $1.039 = 0 \text{ or } 70.01$ A1 Accept sin instead of cos for M1 $v^2 = 12.123$ Speed is 3.48 m s ⁻¹ A1 4 Total 8 7 Force acting against gravity is $mg \sin \theta$ M1 Or 147000 Force acting against gravity and resistance is $mg \sin \theta + 200000$ m1 200 000 + 'mg sin θ ' $= 600000g \sin \theta + 200000$ A1 200 000 + 'mg sin θ ' $= 347000$ A1 A1 6 Total 6 6 6 6(a) EPE = $\frac{Ax^2}{2l}$ M1 A1 $= \frac{180 \times 0.8^2}{2 \times 1.2}$ M1 A1 2		I = 46.4 N	AI	4	AG no marks if g deleted
Horizontally: $\frac{mv^2}{r} = T \cos 50 + T \cos 30$ M1 Accept sin instead of cos for M1 $\frac{6v^2}{1.039} = \frac{46.4 \cos 50 + 46.4 \cos 30}{\text{or } 70.01}$ A1 $\frac{6v^2}{1.039} = \frac{46.4 \cos 50 + 46.4 \cos 30}{\text{or } 70.01}$ A1 $\frac{1}{v^2 = 12.123}$ Speed is 3.48 m s ⁻¹ A1 4 $\frac{1}{1000} = \frac{100000}{10000}$ Force acting against gravity is mg sin θ Force acting against gravity and resistance is mg sin $\theta + 200000$ $= 347000$ A1 Using power = force × velocity A1 A1 B C C C C C C C C C C C C C C C C C C	(b)	Radius of circle is 0.6 tan 60	B1		r = 1.039 or 1.04
$\begin{vmatrix} \frac{mv^2}{r} = T\cos 50 + T\cos 30 & M1 \\ \frac{6v^2}{1.039} = \frac{46.4\cos 50 + 46.4\cos 30}{\text{or } 70.01} & A1 \\ \frac{6v^2}{1.2123} & A1 & 4 \\ \hline \hline Total & 8 \\ \hline Speed is 3.48 \text{ m s}^{-1} & A1 & 4 \\ \hline \hline Total & 8 \\ \hline SForce acting against gravity is mg \sin \theta \\ Force acting against gravity and resistance is mg \sin \theta + 200000 \\ = 347000 & A1 \\ Using power = force \times velocity \\ = 347000 \times 24 \\ = 8330 \text{ kW} & A1 & 6 \\ \hline \hline G(a) & EPE = \frac{\lambda x^2}{2l} \\ = \frac{180 \times 0.8^2}{2 \times 1.2} & M1 \\ = 48 \text{ J} & A1 & 2 \\ \hline \end{matrix}$		Horizontally:			
$\begin{vmatrix} \frac{6v^2}{1.039} = & 46.4\cos 50 + 46.4\cos 30 \\ 0 & r 70.01 \\ v^2 = 12.123 \\ Speed is 3.48 \text{ m s}^{-1} & A1 & 4 \end{vmatrix}$ $\begin{vmatrix} 1 & 1 & 4 \\ \hline & & & & & \\ \hline & & & & & \\ \hline & & & &$		$\frac{mv^2}{r} = T\cos 50 + T\cos 30$	M1		Accept sin instead of cos for M1
$\begin{array}{ c c c c c }\hline & A1 & A1 & A1 \\ \hline 1.039 & \text{or } 70.01 & A1 & A1 \\ \hline v^2 = 12.123 & A1 & 4 \\ \hline & & \text{Total} & & & \\ \hline & & & \text{Total} & & & \\ \hline & & & & & \\ \hline & & & & & \\ \hline & & & &$		$6v^2$ 46.4 cos 50 + 46.4 cos 30			
$\begin{vmatrix} v^2 = 12.123 \\ \text{Speed is } 3.48 \text{ m s}^{-1} & \text{A1} & 4 \end{vmatrix}$ $\hline \text{Total} & 8 \\ \hline \text{S} Force acting against gravity is mg \sin \theta M1 Force acting against gravity and resistance is mg \sin \theta + 200000 = 600000g \sin \theta + 200000 = 347000 A1 Using power = force × velocity M1 = 347000 \times 24 A1F = 8330 \text{ kW} A1 6 \hline \text{6(a)} \text{EPE} = \frac{\lambda x^2}{2l} = \frac{180 \times 0.8^2}{2 \times 1.2} M1 = 48 \text{ J} A1 A1 2$		$\frac{0.0}{1.039} = $ or 70.01	A1		
Speed is 3.48 m s^{-1} A14Total85Force acting against gravity is $mg \sin \theta$ M1Or 147000Force acting against gravity and resistance is $mg \sin \theta + 200000$ m1200 000 + 'mg sin θ ' $= 600000g \sin \theta + 200000$ A1200 000 + 'mg sin θ ' $= 347000$ A141Using power = force × velocityM1 $= 347000 \times 24$ A1F $= 8330 \text{ kW}$ A16 \mathbf{Or} \mathbf{I} \mathbf{Or} $= 48 \text{ J}$ A1 $200 000 + 'mg \sin \theta$ '		$v^2 = 12.123$			
Total85Force acting against gravity is $mg \sin \theta$ M1Or 147000Force acting against gravity and resistance is $mg \sin \theta + 200000$ m1200 000 + 'mg sin θ '= 600000g sin $\theta + 200000$ A1200 000 + 'mg sin θ '= 347000A1M1Using power = force × velocity = 8330 kWM166(a)EPE = $\frac{\lambda x^2}{2l}$ $= 48 J$ M1= 180 \times 0.8^2 2×1.2 $= 48 J$ M1 $A1$ 2		Speed is 3.48 m s^{-1}	A1	4	
5Force acting against gravity is $mg \sin \theta$ M1Or 147000Force acting against gravity and resistance is $mg \sin \theta + 200000$ m1200 000 + 'mg sin θ '= 600000g sin $\theta + 200000$ A1200 000 + 'mg sin θ '= 347000A1M1Using power = force × velocity = 347000 × 24 = 8330 kWM1666(a)EPE = $\frac{\lambda x^2}{2l}$ = $\frac{180 \times 0.8^2}{2 \times 1.2}$ = 48 JM1A12		Total		8	
Force acting against gravity and resistance is $mg \sin \theta + 200000$ ml $20000 + mg \sin \theta$ $= 600000g \sin \theta + 200000$ A1 = 347000 A1 Using power = force × velocity M1 $= 347000 \times 24$ A1F = 8330 kW A1 6 6 6 6 6 6 6 6 6	5	Force acting against gravity is $mg\sin\theta$	M1		Or 147000
$\begin{array}{ c c c c c c } & \text{is } mg \sin \theta + 200000 & \text{m1} & 200000 + \text{'mg } \sin \theta ' \\ & = 600000g \sin \theta + 200000 & \text{A1} & \\ & = 347000 & \text{A1} & \\ & \text{Using power = force \times velocity} & \text{M1} & \\ & = 347000 \times 24 & \text{A1F} & \\ & = 8330\text{kW} & \text{A1} & 6 & \\ \hline & & & & & & & & \\ \hline & & & & & & &$		Force acting against gravity and resistance			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		is $mg\sin\theta + 200000$	m1		$200\ 000 + \operatorname{imgsin} \theta$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$= 600000 g \sin \theta + 200000$			
Using power = force × velocity = 347000 × 24 = 8330 kWM1 A1F A16 6(a) EPE = $\frac{\lambda x^2}{2l}$ = $\frac{180 \times 0.8^2}{2 \times 1.2}$ = 48 JM1 A1		= 347 000	A1		
$= 347000 \times 24$ $A1F$ $= 8330 \text{ kW}$ $A1$ 6 8 8 8 8 8 8 8 8 8 8 8 8 </th <th></th> <th>Using power = force \times velocity</th> <th>M1</th> <th></th> <th></th>		Using power = force \times velocity	M1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$= 347000 \times 24$	A1F		
Total 6 6(a) EPE = $\frac{\lambda x^2}{2l}$ = $\frac{180 \times 0.8^2}{2 \times 1.2}$ M1 = 48 J A1		= 8330 kW	A1	6	
6(a) $EPE = \frac{\lambda x^2}{2l}$ = $\frac{180 \times 0.8^2}{2 \times 1.2}$ = 48 J A1 2		Total		6	
6(a) $ \begin{array}{ c c } EPE = \frac{2l}{2l} \\ = \frac{180 \times 0.8^2}{2 \times 1.2} \\ = 48 \text{ J} \end{array} $ M1 A1 2		λx^2			
$=\frac{180 \times 0.8^{2}}{2 \times 1.2}$ = 48 J M1 A1 2	o (a)	$EPE = \frac{1}{2l}$			
$= \frac{1}{2 \times 1.2}$ $= 48 \text{ J}$ $A1$		180×0.8^{2}			
$= 48 \text{ J} \qquad \qquad \text{A1} \qquad 2$		$=\frac{1}{2\times12}$	M1		
		= 48 J	A1	2	
				-	
(b) Using initial EPE = KE when string M1	(b)	Using initial EPE = KE when string becomes slack:	M1		
$48 = \frac{1}{2} \times 5 \times v^2$ A1F		$48 = \frac{1}{2} \times 5 \times v^2$	A1F		
		2			
$v = \sqrt{\frac{96}{96}}$		$v = \sqrt{\frac{96}{96}}$			
		· √ 5			
= 4.38 m s ⁻¹ A1F 3 ft $\sqrt{\frac{a'}{25}}$		$= 4.38 \text{ m s}^{-1}$	A1F	3	ft $\sqrt{\frac{a}{25}}$
(c) Normal reaction is $5g$ or 49 M1		Normal reaction is $5a$ or 49	M1		1 2.5
$\begin{bmatrix} (c) & \text{Ivinial force is } 5_g & (1 + y) & \text{Ivin} \\ \hline \text{Frictional force is } 5_g \times \mu & \text{Ivin} \\ \hline \text{m1A1} & \text{m1A1} \end{bmatrix}$		Existing force is $5a \times \mu$	$m1\Delta 1$		
Work done by frictional force is $5/(a \times 2)$ m1		Work done by frictional force is $5\mu a \times 2$	m1		
$\begin{bmatrix} 10 \ \mu g \\ -10 \ \mu g \ \mu g \\ -10 \ \mu g \\ -10 \ \mu g \ -10 \ \mu g \\ -10 \ \mu g \ -10 \ \mu g$		$-10\mu_{c}$			
$=10\mu g$		$=10\mu g$	AI		
Stops at wall $\Rightarrow 10\mu g = 48$ m1 m1 $10\mu g = 'a'$		Stops at wall $\Rightarrow 10\mu g = 48$	m1		m1 $10\mu g = 'a'$
$\mu = 0.490$ A1 7 accept $\frac{24}{49}$ OE		$\mu = 0.490$	A1	7	accept $\frac{24}{49}$ OE
Total 12		Total		12	

MM2B (con	t)		-	
Q	Solution	Marks	Total	Comments
7(a)	By conservation of energy to point where OP makes an angle θ with upward vertical:			
	$\frac{1}{2}mv^2 = \frac{1}{2}mu^2 - mga(1 + \sin\theta)$	M1 A1		for 3 terms, 2 KE and 1 PE $mga (1 + \sin \theta)$ term
	$v^2 = u^2 - 2ag\left(1 + \sin\theta\right)$	A1		
	Resolve radially			
	$R = \frac{mv^2}{a} - mg\sin\theta$	M1A1		M1 for 3 terms, include $\sin \theta$ or $\cos \theta$
	$=\frac{mu^2}{a}-3mg\sin\theta-2mg$	A1	6	AG
(b)	When particle leaves the track, $R = 0$ $0 = 3mg - 3mg \sin \theta - 2mg$	M1 A1		
	$\sin\theta = \frac{1}{3}$	M1		SC3 $\sin^{-1}\frac{1}{3}$
	$\theta = 19.5^{\circ}$	A1	4	accept 19.4° or $\theta = 0.340^{\circ}$
	Total		10	
8 (a)	Using $F = ma$:			
	$-\lambda m v^{\frac{3}{2}} = m \frac{\mathrm{d}v}{\mathrm{d}t}$	M1		
	$\therefore \frac{\mathrm{d}v}{\mathrm{d}t} = -\lambda v^{\frac{3}{2}}$	A1	2	AG
(b)	$\int \frac{\mathrm{d}v}{v^{\frac{3}{2}}} = -\lambda \int \mathrm{d}t$	M1		
	$-\frac{2}{v^{\frac{1}{2}}} = -\lambda t + c$	A1		Condone no '+c'
	When $t = 0$, $v = 9 \implies c = -\frac{2}{3}$	M1 A1		Dep. on correct integration (accept sign or $\frac{1}{2}$ error)
	$\frac{2}{\sqrt{v}} = \lambda t + \frac{2}{3}$	A1		
	$\frac{\sqrt{v}}{2} = \frac{1}{\lambda t + \frac{2}{3}}$			
	$v = \left(\frac{6}{2+3\lambda t}\right)^2$	m1		Needs correct algebra
	$v = \frac{36}{\left(2 + 3\lambda t\right)^2}$	A1	7	AG
(c)	When $v = 4$,			or $\frac{36}{\left(2+3\lambda t\right)^2} = 4$ M1
	$\frac{2}{\sqrt{y}} = \lambda t + \frac{2}{3} \implies 1 = \lambda t + \frac{2}{3}$	M1A1		$\left(2+3\lambda t\right)^2 = 9 \qquad A1$
	$t = \frac{1}{2}$			$t = \frac{1}{3\lambda}$ A1 needs statement why
	' 3λ	A1	3	$2+3\lambda t \neq -3$
	Total		12	
	TOTAL		75	

MM2B - AQA GCE Mark Scheme 2009 June series

General Certificate of Education

Mathematics 6360

MM2B Mechanics 2B

Mark Scheme

2010 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX Dr Michael Cresswell Director General

further work

Μ	mark is for method				
m or dM	mark is dependent on one or more M marks and is for method				
А	mark is dependent on M or m marks and is for accuracy				
В	mark is independent of M or m marks and is for method and accuracy				
E	mark is for explanation				
or ft or F	follow through from previous				
	incorrect result	MC	mis-copy		
CAO	correct answer only	MR	mis-read		
CSO	correct solution only	RA	required accuracy		

Key to mark scheme and abbreviations used in marking

anything which falls within

anything which rounds to AWRT ISW ignore subsequent work ACF any correct form FIW from incorrect work given benefit of doubt AG answer given BOD SC special case WR work replaced by candidate OE or equivalent formulae book FB A2,1 2 or 1 (or 0) accuracy marks NOS not on scheme deduct x marks for each error G graph -x EENMS no method shown candidate с ΡI possibly implied \mathbf{sf} significant figure(s) SCA substantially correct approach decimal place(s) dp

FW

No Method Shown

AWFW

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MM2B				
Q	Solution	Marks	Total	Comments
1	Work done = $Fs\cos\theta$	M1		Accept $Fs\sin\theta$ for M1
	$=40 \times 5 \times \cos 30$	A1		
	= 173 J	A1	3	
	Total		3	
2	$\overline{X} = \frac{3 \times 15 + 1 \times 7 + 6 \times 8 + 10 \times 12}{3 + 1 + 6 + 10}$	M1A1		M1 for at least 3 multiplication & addition
	$=\frac{220}{20}$ or 11	A1		
	$\overline{Y} = \frac{3 \times 6 + 1 \times 14 + 6 \times 7 + 10 \times 9}{20}$	M1A1		
	$=\frac{164}{20}$ or 8.2	A1	6	SC 4 (10, 7.4) [omit lamina] ie: B2, B2
	· Centre of mass is at (11, 8, 2)			
	Total		6	
3(a)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B2	2	B1 for four forces B2 for two different reactions and $30g$ and 20g marked
(b)	Taking moments about A: $3.2 \times 30g = R_B \times 5$ $R_B = 19.2g$	M1B1 A1	3	B1 for 3.2 AG
(c)	Resolve vertically: $R_A + R_B = 50g$	M1		Can be awarded in (b)
	$R_A = 30.8g$ or 302 N	A1	2	
(d)	Gravitational force acts through mid-point of the rod	E1	1	
	Total		8	

MM2B (con	MM2B (cont)						
Q	Solution	Marks	Total	Comments			
4(a)	$\mathbf{r} = \int \mathbf{v} \mathrm{d}t$	M1		M1 for at least one term correct			
	$= (t^4 - 6t^2 + 3t)\mathbf{i} + 5t\mathbf{j} + 4t^2\mathbf{k} + \mathbf{c}$	A1m1		m1 for $+\mathbf{c}$			
	When $t=0$, $\mathbf{r}=-5\mathbf{i}+6\mathbf{k}$ \therefore $\mathbf{c}=-5\mathbf{i}+6\mathbf{k}$						
	$\therefore \mathbf{r} = (t^4 - 6t^2 + 3t - 5)\mathbf{i} + 5t\mathbf{j} + (6 + 4t^2)\mathbf{k}$	A1	4				
(b)	$\mathbf{a} = (12t^2 - 12)\mathbf{i} + 8\mathbf{k}$	M1A1	2	M1 for either component			
(c)	Magnitude is $\left\{ \left(12t^2 - 12 \right)^2 + 64 \right\}^{\frac{1}{2}}$	M1 A1F	2				
(d)	Magnitude is a minimum when $12t^2 - 12$ is zero	M1		M1 for correct differentiation of correct expression in (c)			
	ie when $t = 1$	A1	2				
(e)	Minimum acceleration is 8						
	Using $F = ma$,	M1		<i>a</i> could be a vector			
	$F=7 \times 8 = 56$	A1	2	CAO			
	Total		12				

MM2B (con	t)			1
Q	Solution	Marks	Total	Comments
5(a)	Using $F = ma$,			
	$-0.2mv^{\frac{1}{2}} = m\frac{\mathrm{d}v}{\mathrm{d}t}$ $\therefore \frac{\mathrm{d}v}{\mathrm{d}t} = -0.2v^{\frac{1}{2}}$	B1	1	AG Must see equ'n containing m
(b)	$\int \frac{\mathrm{d}v}{v^{\frac{1}{2}}} = -\int 0.2 \mathrm{d}t$	M1		
	$2v^{\frac{1}{2}} = -0.2t + c$	A1m1		m1 for $+ c$
	When $t=0, v=16 : C = 8$	A1		
	$2u^{\frac{1}{2}} - 0.2t + 8$			
	$2V^2 = -0.2l + 8$	A 1	~	
	v = (4 - 0.1t)	AI	5	AG
(c)	When $v = 1$, $1 = (4 - 0.1t)^2$ $4 - 0.1t = \pm 1$	M1		
	t = 30 or 50	A1		$\left[\text{ if use } 2v^{\frac{1}{2}} = 8 - 0.2t \text{ no need to see 50}\right]$
	<i>t</i> =30	A1	3	$t \neq 50$ as ball stops when $t = 40$
(b)	Integrating $y = (4 - 0.1t)^2$:			
(4)	$y = 16 - 0.8t + 0.01t^2$			
	$x = 16t - 0.4t^2 + \frac{0.01}{3}t^3 + d$	M1		M1 for first 3 terms or $-\frac{10}{3} (4-01t)^3$
	When $t=0$, $x=0 \Rightarrow d=0$	A1		
	$x = 16t - 0.4t^2 + \frac{0.01}{3}t^3$			
	When speed is 1 m s^{-1} , $t = 30$			
	x = 480 - 360 + 90	m1		dep on M1 above
	= 210	A1	4	[No 'd', 3 marks only]
	Tota	1	13	

MM2B (con	t)			
Q	Solution	Marks	Total	Comments
6 (a)	$r = 1.2\sin\theta$	B1	1	1.2 $\cos \theta$ 0 marks
(b)	Resolve horiz: $T \sin \theta = m\omega^2 r$	M1A1		$T\cos\theta = m\omega^2 r$ etc M1 (+ second M1)
	$T\sin\theta = 4 \times 5^2 \times 1.2\sin\theta$			
	T = 120	A1		
	Resolve vert: $T\cos\theta = 4g$	M1A1		
	$\cos\theta = 0.32666$			M1 for $\tan \theta = \frac{30\sin \theta}{2}$
	$\theta = 70.9^\circ \text{ or } 1.24^\circ$	A1	6	8
	Total		7	
7(a)	Using conservation of energy:			
	$\frac{1}{2}mu^2 = \frac{1}{2}mv^2 - mgh$	M1A1		M1 for 3 terms, 2 KE and PE or 4 terms, 2 KE and 2 PE
	$\frac{1}{2}mu^2 = \frac{1}{2}mv^2 - mga(1 - \cos\theta)$	M1A1		M1A1 for finding <i>h</i>
	$v^2 = u^2 + 2ga(1 - \cos\theta)$			
	$v = \left(u^2 + 2ga[1 - \cos\theta]\right)^{\frac{1}{2}}$	A1	5	AG
(b)	Using $F = ma$ radially,			
	$mg\cos\theta - N = \frac{mv^2}{m}$			M1 Commont 2 formula
	a	M1A1		A1 Correct signs $(-N \text{ or } + N)$
	Particle leaves surface of hemisphere when $N = 0$	B 1		
	$mg\cos\theta = \frac{m}{a}\left(u^2 + 2ga[1 - \cos\theta]\right)$	M1		
	$\cos\theta = \frac{u^2}{ga} + 2 - 2\cos\theta$			
	$\cos\theta = \frac{1}{3} \left(\frac{u^2}{ga} + 2 \right)$	A1	5	
	Total		10	

	Solution	Marks	Total	Comments
8 (a)	When $r > 22$ KE is $\frac{1}{2} \times 49 \times y^2$			
0(a)	when $x \ge 22$, KE is $\frac{-}{2}$			
	EPE is $\frac{1078(x-22)^2}{x-22}$	24141		1079 m^2
	2×22	MIAI		M1 for any $\frac{1078p}{2\times 22}$
	Change in PE is $49 \times g \times x$			
	Conservation of energy:			
	$1 + 10 \times y^2 + 1078(x-22)^2 = 40 \times x \times x$	M1A1		M1 3 terms (KE, PE, EPE)
	$\frac{-2 \times 49 \times V}{2} + \frac{-2 \times 22}{2 \times 22} = 49 \times g \times x$	A1		A1 2 terms correct A1 all 3 terms correct
	$\frac{49}{2}v^2 + \frac{49}{2}(x-22)^2 = 49gx$			
	$v^2 + (x - 22)^2 = 19.6x$			SC3 $\frac{49}{v^2} + \frac{49}{c^2} = 49g(c+22)$
				$\frac{2}{2} \frac{2}{2}$
				[could use x for e]
	$5v^2 = 318x - 5x^2 - 2420$	A1	6	AG
(b)	If <i>x</i> is not greater than 22, cord is not stretched	B1	1	
(c)	At maximum value of x, $v = 0$ $\therefore 5x^2 - 318x + 2420 = 0$	M1		
	$x = \frac{318 \pm \sqrt{318^2 - 4 \times 5 \times 2420}}{2 \times 5}$	m1		dep on M1 above
	x = 54.76 or 8.84	A1		A1 for either solution
	= 54.8	E1	4	Needs to give a reason for deletion of second root. Both roots must be positive: one above 22, one below 22
(d)(i)	When speed is a maximum, $a = 0$			or
	tension = gravitational force	M1		$\frac{d(5v^2)}{dx} = 318 - 10x$
	1078(x-22)			
	$\frac{1}{22} = 49g$	A1		$= 0$ at maximum speed $\Rightarrow 318 - 10x = 0$
	x - 22 = 9.8		<i>c</i>	
	x = 31.8	A1	3	AG
(ii)	From part (a), $v^2 = 19.6 \times 31.8 - 9.8^2$	M1		
	v = 22.96	A1	2	
	Maximum speed is 23.0 ms ⁻¹			
	Total		16	
	TOTAL		75	

Version 1.0

General Certificate of Education June 2010

Mathematics

MM2B

Mechanics 2B

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

Μ	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
А	mark is dependent on M or m marks and is for accuracy					
В	mark is independent of M or m marks and is for method and accuracy					
Е	mark is for explanation					
\checkmark or ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within	FW	further work			
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
–x EE	deduct <i>x</i> marks for each error	G	graph			
NMS	no method shown	с	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MM2B

Q	Solution	Marks	Total	Comments
1	$v = \frac{ds}{ds}$	141		M1 for either $\frac{ds}{dt}$ or 1 of 2 terms correct
	d <i>t</i>	MI		dt (ignore signs)
	$= 10t - 12 \sin 4t$	A1A1	3	(ignore signs)
	Total		3	
2(a)	Kinetic energy = $\frac{1}{2} \times 3 \times 4^2$	M1		
	= 24 (J)	A1	2	
(b)	PE lost is			
	$= 3 \times g \times 51$	M1		
	= 153g or 1499.4		2	1.1.100 1.50
	= 1500 J	AI	2	Accept 1499, 153g
(c)(i)	KE is 24 + 153g	M1		M1 '(a)' + '(b)'
	= 1523.4			
	= 1520 J	A1		(if done (c)(i) in (b) 0 marks; if done (b)
				and then (c)(i) in (b) M1 only)
(ii)	Using KE = $\frac{1}{2}mv^2$			
	$v^2 = 1015.6$	M1		
	Speed of stone is 31.9 ms^{-1}	A1	4	Accept 31.8 from 1520
				-
				If use constant acceleration formulae in
				2D, possible 4 marks in (C) BUT no
				vertical
(d)	eg Stone is a particle	E1	1	
	No air resistance			Not no resistance; accept no wind
	T-4-1		0	resistance
3 (a)	lotal	E1	<u> </u>	Only accort 'aummatry'
J(a)	Symmetry		1	Only accept symmetry
(b)	Moments about <i>B</i> :			
	$0.4 \times 4 + 0.1 \times 8 = 0.5 \times \overline{x}$	M1A1		M1 3 terms, 2 correct
	$\bar{x} = \frac{2.4}{2}$			
	$x = \frac{1}{0.5}$			
	= 4.8 cm	A1	3	
	Total		4	

MM2B (cont)

Q	Solution	Marks	Total	Comments
4(a)	Using $\mathbf{F} = m\mathbf{a}$,			
	$400\cos\frac{\pi}{2} t$ i + $600t^2$ j = 200 a	M1		
	$\mathbf{a} = 2\cos\frac{\pi}{2} t \mathbf{i} + 3t^2 \mathbf{j}$	A1	2	
	<i>.</i>			<i>c</i>
(b)	$\mathbf{v} = \int a \mathrm{d}t$	M1		M1 for either $\int a dt$ or 1 of 2 terms correct
	$=\frac{4}{\pi}\sin\frac{\pi}{2} t\mathbf{i} + t^{3}\mathbf{j} + \mathbf{c}$	A1m1		m1 for + \mathbf{c}
	When $t = 4$, $\mathbf{r} = -3\mathbf{i} + 56\mathbf{j}$, $64\mathbf{j} + \mathbf{c} = -3\mathbf{i} + 56\mathbf{j}$	m1		
	$\therefore \mathbf{c} = -3\mathbf{i} - 8\mathbf{j}$ $\therefore \mathbf{v} = (\frac{4}{\pi}\sin\frac{\pi}{2}t - 3)\mathbf{i} + (t^3 - 8)\mathbf{j}$	A1	5	Do not accept $\frac{2}{\frac{\pi}{2}}$ Accept 1.27 for $\frac{4}{\pi}$
(c)	When particle is moving due west, northerly component is zero $\therefore t^3 - 8 = 0$ t = 2	M1 A1√	3	
	l - 2	AI	3	
(d)	When $t = 2$, $\mathbf{v} = -3\mathbf{i} + 0\mathbf{j}$ Speed of particle is 3 m s ⁻¹	B1√ B1	2	B1 for change -3 to $+3$
	Total		12	
5	$\frac{\mathrm{d}v}{\mathrm{d}t} = -\frac{\lambda}{v^{\frac{1}{4}}}$	M1		
	$\int v^{\frac{1}{4}} \mathrm{d}v = -\int \lambda \mathrm{d}t$	m1		Condone one of $v^{-\frac{1}{4}}$, $+\int \lambda dt$, $\frac{1}{\lambda}$
	$\frac{4}{5}v^{\frac{5}{4}} = -\lambda t + c$	A1A1 m1		m1 for $+ c$
	$t = 0, v = u \therefore c = \frac{4}{5}u^{\frac{5}{4}}$	A1		
	$\therefore v^{\frac{5}{4}} = u^{\frac{5}{4}} - \frac{5}{4}\lambda t$			
	$v = \left(u^{\frac{5}{4}} - \frac{5}{4}\lambda t\right)^{\frac{4}{5}}$	A1	7	
	Total		7	

MM2B (con	t)			
Q	Solution	Marks	Total	Comments
6(a)	Using power = force × velocity Power = $(30 \times 48) \times 48$ = 69120 watts	M1 A1	2	AG
(b)	When speed is 40 m s ⁻¹ , max force exerted is $\frac{69120}{40}$			
	= 1728 N Accelerating force is '1728' – 1200 N Using $F = ma$:	B1 M1		
	528 = 1200a $a = 0.44 \text{ m s}^{-2}$	ml A1	4	
(c)	Force exerted by engine is $\frac{69120}{v}$	B1		
	Force exerted by the engine = $30v - mg \sin 3$	M1		(Use of cos3 delete A1,A1 of 3 A terms)
	$30v - 615.47$ (or 1200gsin 3)= $\frac{69120}{v}$	A1A1		A2 All terms correct A1 Two terms correct
	$30v^2 - 615.47v - 69120 = 0$	A1		SC3 for $30v^2 + 615.47v - 69120 = 0$
	$v = \frac{615.47 \pm \sqrt{615.47^2 + 4 \times 30 \times 69120}}{2 \times 30}$	M1		
	Speed is 59.3 m s ^{-1}	A1	7	
	Total		13	
7(a)	S C	B2	2	B1 for <i>S</i> and 6 <i>g</i> (in correct place) B1 for <i>R</i> and <i>F</i> or combined vertical force at <i>C</i>
(b)	$\int_{A} \int_{6g}$ Moments about C: $3 \times S \times \cos 20 = 6g \times 1 \times \cos 20$ S = 19.6 N or $2g$	M1A1 A1	3	M1 2 terms, 1 term correct R, F not correct 0 marks in (c)(i) and (c)(ii)
(c)(i)	Moments about A: $2 \times 6g \times \cos 20 = R \times 3$ R = 36.8 N (or resolving, $R = 6g \cos 20 - S \cos 20$ $= 4g \cos 20$)	M1A1 A1		Or Moments about mid-point of rod: $2 \times S \times \cos 20 = P \times 1 \times \cos 20$ P = 39.2 N or $4g(Or resolving vertically P = 4g)$
(ii)	Resolve parallel to AB: $S \cos 70 + F = 6g \cos 70$ $F = 4g \cos 70$ = 13.4 N	M1 A1	5	$R = P \times \cos 20$ M1 A1 $= 36.8 \text{ N}$ A1 $F = P \times \sin 20$ M1 $= 13.4 \text{ N}$ A1
(d)	(or $F = 6g \sin 20 - S \sin 20 = 4g \sin 20$) Using $F = \mu R$:	M1		M1 '(c)(ii)' = μ '(c)(i)'
	$13.4 = \mu \times 36.8$ $\mu = 0.364$ or tan20	A1√	2	$(\text{condone} \ge)$
	Total		12	

MM2B (cont)					
Q	Solution	Marks	Total	Comments	
8 (a)	Using conservation of energy:				
	$\frac{1}{2}mv^2 = 3mg(1 - \cos\theta)$	M1A1		M1 $\frac{1}{2}mv^2 = mgh$	
	$v^2 = 6g(1 - \cos 15)$	m1			
	$v = (6g[1 - \cos 15])^{\frac{1}{2}}$		_		
	= 1.42	A1	4	SC3: 1.41	
(b)	When particle is at rest,			2	
	resolve radially $T = mg \cos 15$	M1A1		M1 $T - mg\cos 15 = \frac{mv^2}{r}$ or $T = mg\sin 15$	
	$22 = mg \cos 15$				
	m = 2.32	A1	3		
	Total		7		
9	As particle moves, $T = \frac{mv^2}{r}$	M1		or using unknown as extension:	
	If radius is r , extension is $r - 1.2$	B1		If extension is x, radius is $1.2 + x$ B1	
	Using $T = \frac{\lambda x}{l}$:			Using $T = \frac{\lambda x}{l}$:	
	$T = \frac{192(r-1.2)}{1.2}$	M1		$T = \frac{192x}{1.2} $ M1	
	= 160(r - 1.2)	A1		= 160x A1	
	$T = \frac{mv^2}{r} \Longrightarrow 160(r - 1.2) = \frac{8 \times 3^2}{r}$	M1		$T = \frac{mv^2}{r} \Longrightarrow 160x = \frac{8 \times 3^2}{1.2 + x} \qquad M1$	
				M1	
	$160r^2 - 192r = 72$	A1		$192 r + 160 r^2 = 72$ A1	
	$(\text{ or } 192r^2 - 230.4r = 86.4)$			1724 + 1004 - 72 MI	
	$20r^2 - 24r - 9 = 0$			$20x^2 + 24x - 9 = 0$	
	(10r+3)(2r-3) = 0	M1		(10x-3)(2x+3) = 0 M1	
	r = 1.5 or -0.3			x = 0.3 or -1.5	
	Radius is 1.5	A1	8	Radius is 1.5A1	
	Total		8		
	TOTAL		75		

Version1.0

General Certificate of Education (A-level) January 2011

Mathematics

MM2B

(Specification 6360)

Mechanics 2B

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.
Μ	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
– <i>x</i> EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

MM2B				
Q	Solution	Marks	Total	Comments
1(a)	$\mathbf{r} = \int v \mathrm{d}t$			
	= $(4t + t^{3})\mathbf{i} + (12t - 4t^{2})\mathbf{j} + \mathbf{c}$	M1A1		M1 either i or j term correct. Condone no c
	When $t = 0$, r = 5 i - 7 i			
	$\mathbf{c} = 5\mathbf{i} - 7\mathbf{j}$	M1		Any attempt at c
	$\mathbf{r} = (5 + 4t + t^3)\mathbf{i} + (-7 + 12t - 4t^2)\mathbf{j}$	A1	4	
(b)	$\mathbf{a} = \frac{\mathrm{d}v}{\mathrm{d}t}$			
	$\mathbf{a} = 6t \mathbf{i} - 8 \mathbf{j}$	M1A1	2	M1 either term correct
(c)	Using $\mathbf{F} = m\mathbf{a}$ $\mathbf{F} = 2(6t \mathbf{i} - 8 \mathbf{i})$	M1		Or: using $\mathbf{F} = m\mathbf{a}$ $\mathbf{F} = 2(6t \mathbf{i} - 8 \mathbf{i})$
	= 12t i - 16 j	A1		When $t = 1$, F = 12 i - 16 j
	∴ Magnitude of force is			
	$(144t^2 + 256)^{\frac{1}{2}}$ when $t = 1$	M1		Magnitude of force is $(144 + 256)^{\frac{1}{2}}$
	= 20 N	A1	4	= 20 N
	Total		10	
2(a)	PE lost is			
	$= 4 \times g \times 5 \cos 70$	M1A1	2	M1 $4 \times g \times 5 \times \cos \sigma \sin 20 \text{ or } 70$
(h)	$= 67.0 \text{ J}$ $KE \text{ is loss of } PE \rightarrow KE \text{ is } 67.0 \text{ J}$	P 1	1	ft
(0)	$\mathbf{KE} \text{ is 1055 OF } \mathbf{FE} \rightarrow \mathbf{KE} \text{ is 07.0 J}$	DI	1	It
(c)	Using KE = $\frac{1}{2}mv^2$			
	$v^2 = 33.5$	M1		
	Speed of particle is 5.79 m s ^{-1}	A1	2	(ft from (b))
	Total		5	
3(a)	PE is $400 \times g \times 8$ = 2200 g [or 21 260]	D 1	1	
	– 5200 g [01 51 500]	DI	1	
(b)	KE is $\frac{1}{2} \times 400 \times 2^2$			
	= 800	B1	1	
(c)	Work done per minute is 32 160 J			
	Power = $32160 \div 60$	M1		$\left[(a) + (b) \right] \div 60$
	= 536 W	A1	2	CAO Accept 537 from 31400 in (a)
	Total		4	(w)

	Mark Scheme – General Certificat	e of Education (A-level) Mathematics	– Mechanics 2B – January 2011
--	----------------------------------	--------------------------------------	-------------------------------

MM2B(cont)				
Q	Solution	Marks	Total	Comments
4(a)	Moments about line AD: $5 \times 30 + 4 \times 10 = 9 \times \overline{x}$ $\overline{x} = \frac{190}{9}$	M1A1		M1 2 of 3 terms correct
	= 21.1 cm	A1	3	
(b)	Moments about line AB: $5 \times 15 + 4 \times 25 = 9 \times \overline{y}$ $\overline{y} = \frac{175}{9}$	M1A1		M1 2 of 3 terms correct
	$\overline{y} = 19.4 \text{ cm}$	A1	3	If moments about <i>DC</i> ; 10.6 found SC2
(c)	$\tan \theta = \frac{80}{175} \text{ or } \frac{8.9}{19.4}$ = 0.4571	M1 A1 A1		M1 use of tan A1 use of 8.9 or 80 $(30-(a))$ Or 0.45876
	Angle is $\tan^{-1} 0.4571$ = 24.6°	A1	4	$65.4^{\circ} \Rightarrow M1A1 \text{ only}$
(d)	Moments about the line <i>PR</i> : (or <i>AD</i> or <i>BC</i>)	M1		
	$30m = 4 \times 20 \text{ or } 9 \times \frac{80}{9}$	A1		
	$m = \frac{8}{3}$	A1	3	
(e)	Centre of mass is at middle of lamina	E1	1	
	Total		14	

MM2B(cont				
Q	Solution	Marks	Total	Comments
5(a)	Resolve vertically $R = mg$			Ignore all inequalities
	If the particle is on the point of sliding,	M1		
	$F = \mu R$	IVI I		
	$\therefore F = 0.3R = 0.3mg$	A1		
	in a close closely			
	Resolving radially: $F = m\omega^2 r$	M1		
	$0.3mg = m\omega^2 \times 0.8$			
	$\omega^2 = \frac{0.3 \times g}{2}$			
	0.8	A 1	4	
	$\omega = 1.92$	AI	4	
	45 revolutions per minute $= 90\pi$	N/1		
(D)(1)	45 revolutions per minute $-\frac{1}{60}$	MI		
	$=\frac{3\pi}{2}$ or 4.71 radians per second	A1	2	
	2			
(ii)	Resolving radially: $F = m\omega^2 r$			
	$(3\pi)^2$	M1A1		M1A1 either side correct
	$m\mu g = m\left(\frac{1}{2}\right) \times 0.15$	A1		A1 second side correct
	$(3\pi)^2$			
	$\left(\frac{3\pi}{2}\right) \times 0.15$			
	$\mu = \frac{q}{g}$			
	$\mu = 0.340$	A1	4	CAO (accept 0.339)
	Total		10	
6(a)	By conservation of energy			
	$\frac{1}{2}m(5v)^2 = \frac{1}{2}m(3v)^2 + mg^2a$	M1		M1 for 3 terms, 2 KE and PE
	2m(3v) = 2m(3v) + mg 2u	A1		
	$8v^2 = 2ag$	A1		
	$v = \sqrt{\frac{ag}{ag}}$ or $\frac{1}{\sqrt{ag}}$	Δ1	Δ	
	$\sqrt[n]{4}$ or $\frac{1}{2}\sqrt[n]{ag}$	711	-	
(b)	Greatest and least values of tension are at the highest and lowest points of its path			
	$m(3v)^2$			
	At top, $T = \frac{m(ST)}{a} - mg$	M1		
	5	110		
	$=\frac{-mg}{4}$	Altt		It - must be positive tension
	$\Delta t B T = \frac{m(5v)^2}{m^2} + m^2$	M1		
	$a = \frac{1}{a} + mg$	141 1		
	$=\frac{29}{mg}$	A1ft		
		V	~	
	Kauo 18 29:5	AI	<u> </u>	CAU Condone 5 : 29 or 1 : 5.8
1	Iotai			1

MM2B(cont)				
Q	Solution	Marks	Total	Comments
7(a)	Work done = $\int_{0}^{e} \frac{\lambda x}{l} dx$	M 1		Condone lack of limits and ' dx '
	$=\left[\frac{\lambda x^2}{2l}\right]_0^e$	A1		Must include limits from integral
	$=\frac{\lambda e^2}{2l}$	A1	3	AG
(b)(i)	Using $T = \frac{\lambda x}{l}$, $7g = \frac{196x}{2}$	M1		M1 could use $3g$ or $4g$ – at least 1 side correct
	$x = \frac{14g}{196}$	A1		
	= 0.7	A1	3	
(ii)	By C of Energy, when next at rest, EPE (initial) = PE change (for platform) + EPE (when at rest)			
	$\frac{196 \times 0.7^2}{2 \times 2} = 4 \times g \times (0.7 - x) + \frac{196x^2}{2 \times 2}$	M1A1 A1		M1 3 terms (not including $\frac{1}{2}mv^2$) A1 2 of 3 terms correct A1 all correct
	$2.45 = 2.8 - 4x + 5x^{2}$ $100x^{2} - 80x + 7 = 0$ (10x - 7)(10x - 1) = 0 x = 0.1	m1 A1 A1	6	[last A1, must give 0.1, not 0.1 and 0.7]
	Alternative			
(b)(ii)	$\frac{196 \times 0.7^2}{2 \times 2} = 4gX + \frac{196(0.7 - X)^2}{2 \times 2}$	(M1) (A1) (A1)		(where <i>X</i> is distance moved upwards)
	$4gX = 98 \times 0.7X + 49X^{2}$	(m1)		
	$X = 0, \ 0.6$	(A1A1)		
(iii)	Max speed when $T = mg$ 196x	M1		
	$4g = \frac{2}{2}$	A1		
	<i>x</i> = 0.4	A1	3	Or mid-point of values 0.2 and 0.6 above SC2
	Total		15	

Mark Scheme - General Certificate of Education (A-level) Mathematics - Mechanics 2B -	January 2011
---	--------------

MM2B					
Q	Solution	Marks	Total	Comments	
8 (a)(i)	F = 65g - 260v			Accept $260v - 65g$	
	=65(9.8-4v)	B1	1	AG must see $65g$ or 260	
(ii)	Using $F = ma$				
	$65 \frac{dv}{dt} = 65(9.8 - 4v)$	M1		Need to see terms in m (condone $-$ sign)	
	dt	1,11			
	$\frac{dv}{dt} = -4(v - 2.45)$	A1	2	AG	
	d <i>t</i>				
	1 1				
(b)	$\frac{1}{2} \frac{dv}{dt} = -4$	B1			
	v - 2.45 dt				
	$\int \frac{1}{245} dv = -\int 4 dt$				
	• v - 2.45	M1		M1 log side correct	
	$\ln(v - 2.45) = -4t + c$	A1		-4t + c	
	$v - 2.45 = Ce^{-4t}$				
	t = 0, v = 19.6				
	$\therefore C = 17.15 \text{ or } e^{2.84}$	A1		Or $c = \ln 17.15$ or 2.84	
	$\therefore v = 2.45 + 17.15e^{-4t} 2.45 + 17.2e^{-4t}$	A1	5		
	Total		8		
	TOTAL		75		

Version 1.1

General Certificate of Education (A-level) June 2011

Mathematics

MM2B

(Specification 6360)

Mechanics 2B

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Q	Solution	Marks	Total	Comments
1(a)	$KE = \frac{1}{2} \times 58 \times 2^2$	M1		M1: Correct fully substituted expression for KE.
	= 116 J	A1	2	A1: CAO
(b)	Change in PE: $mgh = 58 \times 9.8 \times 7$	M1		M1: Expression for PE with 58 and 9.8 or 9.81 with 6 or 7 for the height (or 11 and 4, 11 and 5 or 10 and 4)
	= 3978.8	A1		A1: Accept 3980 or 3970 or 3978 or 3979 or 3978.8.
	KE = 3978.8 + 116 J = 4094.8 J	M1		M1: Adding their two previous answers.
	Speed of Kim is $\sqrt{\frac{4094.8}{\frac{1}{2} \times 58}}$	dM1		dM1: Seeing expression for v (not v^2), dependent on second M1
	= 11.00 m/s = 11.9 m s ⁻¹	A1	5	A1: Accept 11.88 or 11.8 or 11.9 Accept 11.88 or 11.8 or 11.9 or AWRT 11.89 from <i>g</i> = 9.81.
				Obtaining $v = \sqrt{u^2 + 2gh}$ followed by
				incorrect substitution M0M1M1, unless h is 6 or 7, which is M1M1M1
				11.0 (from $h = 6$) M1M1M1
				$v = \sqrt{2^2 + 2 \times g \times 7} \text{M1M1M1}$
				$=\sqrt{141.2}$ A1 -11.9 A1
				-11.7 AI
				$v = \sqrt{4 + 14g} \text{M1M1M1A1}$ -119A1
				$v = \sqrt{2^2 + 12g} \text{M1M1M1}$
	Total		7	

Q	Solution	Marks	Total	Comments
2	$\bar{X} = \frac{2 \times 9 + 3 \times 2 + 8 \times 3 + 7 \times 6}{2 + 3 + 8 + 7}$	M1		M1: Expression for \overline{X} with no more than one error in the numerator and correct denominator.
	$=\frac{90}{20}$ or 4.5	A1		A1: Correct distance. Accept $\frac{9}{2}$ or $\frac{90}{20}$ or equivalent.
	$\overline{Y} = \frac{2 \times 6 + 3 \times 4 + 8 \times 8 + 7 \times 11}{20}$	M1		M1: Expression for \overline{Y} with no more than one error in the numerator and correct denominator.
	$=\frac{165}{20}$ or 8.25	A1		A1: Correct distance. Accept $\frac{33}{4}$ or $\frac{165}{20}$ or equivalent
	∴ Centre of mass is at (4.5, 8.25)	A1F	5	A1: Correct coordinates; dependent on M1 M1 Do not accept $\frac{90}{20}$ etc at this stage.
				SC4: For final answer (8.25, 4.5) award 4 marks.
				Moments about <i>B</i> , (2.5, 4.25) SC2
	Total		5	

Q	Solution	Marks	Total	Comments
3 (a)	$\mathbf{a} = \frac{dv}{dt}$			
	$\mathbf{a} = -8\mathbf{e}^{-2t}\mathbf{i} + (6-6t)\mathbf{j}$	M1 A1 A1	3	M1: Differentiating with either of the two components correct. Do not need to see i or j.A1: Correct i component.A1: Correct j component.
(b)(i)	Using $\mathbf{F} = m\mathbf{a}$			
	$\mathbf{F} = 5 \times \{-8e^{-2t}\mathbf{i} + (6-6t)\mathbf{j}\}\$	M1 A1	2	M1: Multiplying their acceleration by 5, even if not a vector. A1: Correct expression
	$= -40\mathrm{e}^{-2t}\mathbf{i} + (30 - 30t)\mathbf{j}$			
(ii)	Magnitude of F is			
	$\{(-40)^2 + (30)^2\}^{\frac{1}{2}}$	M1		M1: Finding magnitude from two non- zero terms. Must add terms and square root. Condone $\{(40)^2 + (30)^2\}^{\frac{1}{2}}$
	= 50	A1	2	A1: Correct answer only. In this part, condone lack of negative signs in expression for force in (b) (i).
(c)	When F acts due west, j component is			
	zero $30 - 30t = 0$	M1		M1: Putting j component equal to zero.
	t = 1	A1	2	A1: Correct time.
(d)	$\mathbf{r} = -2e^{-2t}\mathbf{i} + (3t^2 - t^3)\mathbf{j} + \mathbf{c}$	M1 A1 A1		 M1: Integration with either of the two components correct. Do not need to see i or j. A1: Correct i component. A1: Correct j component. Condone lack of + c
	When $t = 0$, $\mathbf{r} = 6\mathbf{i} + 5\mathbf{j}$ \therefore $\mathbf{c} = 8\mathbf{i} + 5\mathbf{j}$	dM1		dM1: Finding c using $6\mathbf{i} + 5\mathbf{j}$ and $e^0 = 1$.
	$\therefore \mathbf{r} = (8 - 2e^{-2t})\mathbf{i} + (5 + 3t^2 - t^3)\mathbf{j}$	A1	5	A1: Correct position vector.
	Total		14	

Q	Solution	Marks	Total	Comments
4(a)	$R_C \text{ or } 65g 17g R_D \text{ or}$ $C \text{ or } Or Or D \text{ or}$ $38g 637 166.6 44g$	B1 B1	2	B1: Two weights correct and in correct relative positions.B1: Two upward reaction forces, labelled differently.
				Note all forces must be shown as arrows and have labels. Condone use of $g = 9.81$ for calculating weights.
(b)	Taking moments about C $3 \times 17g + 2.6 \times 65g = 44g \times d$	B1 M1 A1		 B1: Seeing 2.6. M1: Three term moment equation including 17g, 65g and 44g or 17, 65 and 44, with different distances for the 17g and 65g. A1: Correct equation.
	44d = 220 d = 5 Distance is $5 - 4.6 = 0.4$ m	A1	4	A1: Correct final answer.
	Alternative $R_C = 38g$ Taking moments about D 38g(4.6+x) = 65g(2+x) + 17g(1.6+x)	(B1) (M1) (A1)		Could take moments about any other point
	1/4.8 - 130 - 2/.2 = 44x x = 0.4	(A1)		
(c)	Gravitational force (centre of mass or weight) at mid-point (or centre) of the plank	E1	1	E1: Correct explanation.
	Total		7	
5(a)	$90 \mathrm{km} \mathrm{h}^{-1} = 90 \times \frac{1000}{3600} \mathrm{m} \mathrm{s}^{-1}$ $= 25 \mathrm{m} \mathrm{s}^{-1} \qquad \mathbf{AG}$	B1	1	B1: Must see $\frac{1000}{3600}$ or $\frac{1000}{60^2}$.
(b)	Resistance is 5000 N	B1		B1: Obtaining 5000.
	$= 5000 \times 25$	M1		M1: Using $P = Fv$ with 25 and their F.
	= 125 kW	A1	3	A1: Correct final answer, must be in kW.
				125W or 125 000 W B1M1 125 B1M1A1
	Total		4	

Q	Solution	Marks	Total	Comments
6(a)	Using $F = ma$			
	$-2mv^{\frac{5}{4}} = m\frac{\mathrm{d}v}{\mathrm{d}t}$			
	$\therefore \frac{\mathrm{d}v}{\mathrm{d}t} = -2v^{\frac{5}{4}} \qquad \mathbf{AG}$	B1	1	B1: Must see $-2mv^{\frac{5}{4}} = m\frac{dv}{dt}$ or $-2mv^{\frac{5}{4}} = ma$ and correct final answer.
(b)	$\int \frac{\mathrm{d}v}{v^{\frac{5}{4}}} = -2\int \mathrm{d}t$	M1		M1: Two integrals with one in the form $\int f(v)dv \text{ where } f(v) = v^{\pm \frac{5}{4}} \text{ or } v^{\pm \frac{4}{5}}.$ The other integral must not contain v terms.
	$-\frac{4}{v^{\frac{1}{4}}} = -2t + c$	A1		A1: Correct expression. Condone lack of $+ c$ for this A1, but no subsequent marks if no c .
	When $t = 0, v = 16 \implies c = -2$ $-\frac{4}{v^{\frac{1}{4}}} = -2t - 2$ $v^{\frac{1}{4}} = \frac{2}{v^{\frac{1}{4}}}$	dM1 A1		dM1: Using $t = 0$ and $v = 16$ to find c . A1: Obtaining $c = -2$.
	$v = \left(\frac{2}{t+1}\right)^4 \qquad \mathbf{AG}$	A1	5	A1: Correct final answer. Must see $v^{\frac{1}{4}} = \frac{2}{1+t}$ or $v^{-\frac{1}{4}} = \frac{1+t}{2}$ or $\frac{1}{v^{\frac{1}{4}}} = \frac{1+t}{2}$ Or
				if they obtain $v = \left(\frac{2}{t+c}\right)^4$ $v = 16, t = 0 \Rightarrow 16^{\frac{1}{4}} = \frac{2}{c}$, condone $c = 1$ (no other root considered)
	Total		6	

TO FAT	· · · · ·
- MM2R (cont)

Q	Solution	Marks	Total	Comments
7(a)	Resolving vertically			
	$T\cos 30 + 20\cos 50 = 4g$	M1A1		M1: Three terms, which must include $4g$,
		A1		$T\cos\theta$ or $T\sin\theta$ and $20\cos\theta$ or $20\sin\theta$,
				where $\theta = 30, 40, 50 \text{ or } 60.$
				A1: Correct terms
				A1: Correct equation
	$T\cos 30 = 26.344$			
	T = 30.4 N	A1	4	A1: Correct final answer.
				Accept 30.4 or AWRT 30.42.
				Accept 30.4 or 30.5 or AWRT 30.45 from
				g = 9.81.
	2	MI		M1. Thus towns which woust in shade
(D)	Horizontally: $\frac{mv^2}{r} = 20\cos 40 + T\cos 60$			$\frac{2}{2}$ $\frac{5}{2}$
	r	AII		$\frac{mv^2}{mv}$ or $\frac{4\times 5^2}{mv}$, $T\cos\theta$ or $T\sin\theta$ and
				r r
				$20\cos\theta$ or $20\sin\theta$, where $\theta = 30, 40, 50$ or
				60.
				AIF: Correct equation. May include T, m
	2	4M1		and V .
	$\frac{4 \times 5^2}{30.53} = 30.53$	alvi i		divit: Substitution of values for T, m and $4 - 5^2$
	r			v. Equation of form $\frac{4 \times 5^{-}}{}$ = number
				ŕ
	r = 3.2/53/	A 1	Λ	A 1. Compart of an and A count 2 27 of 2 28
	= 3.28	AI	4	A1: Correct answer. Accept 3.2/ or 3.28
				of AWK1 5.26. Accent 3.27 or AWPT 3.27 from $\alpha =$
				9.81
				×.01.
				Note: Do not accept $\frac{mv}{r} = 30.4$ or
				r similar
	Tatal		8	51111141 •
	101a1		U	

Q	Solution	Marks	Total	Comments
8 (a)	Using conservation of energy			
	(lowest and highest points)			M1. Emotion for a second second
	$\frac{1}{2}mu^2 = \frac{1}{2}mv^2 + mg(2a)$	M1A1		with two KE terms and one or two PE
				terms. May see m or 0.3.
				A1: Correct equation.
	$u^2 = v^2 + 4ag$			
	For complete revolutions, $v > 0$			
	$\therefore u^z > 4ag$			
	$u > 2\sqrt{ag}$ AG	A1	3	A1: Correct result with statement of $v > 0$
				and some intermediate working including
	Or			4 <i>ag</i> term.
	Use of PE at top and KE at <i>B</i>	(M1)		
	Correct PE and KE	(A1)		
	Correct deduction including inequality	(A1)		
(b)(i)	C of Energy			
				M1: Equation for conservation of energy
	$\frac{1}{2}mu^2 = \frac{1}{2}mv^2 + mga(1 + \sin\theta)$	M1A1		with two KE terms and one or two PE
	2^{max} 2^{max} 2^{max} 2^{max}	WIIAI		terms including a $\sin\theta$. May see <i>m</i> or 0.3.
	2			A1: Correct equation.
	$v^2 = \left(\sqrt{\frac{9}{2}}ag\right)^2 - 2ga(1 + \sin\theta)$			
	$=\frac{5}{2}ag-2ag\sin\theta$			
	Resolve radially			
	$\pm R = -mg\sin\theta + \frac{mv^2}{m}$	M1A1		M1: Three term equation from resolving
	a	MIAI		signs and replacement of sin by cos.
				A1: Correct equation. May see <i>m</i> or 0.3.
	$= -mg\sin\theta + \frac{5}{-mg} - 2mg\sin\theta$			
	$\frac{1}{2}$			
	$=-3mg\sin\theta+\frac{5}{2}mg$			
	2 2			A 1. Simplified correct final answer
	$-\begin{pmatrix} 3 & 9 \\ - \end{pmatrix} \alpha \mathbf{OE}$ (must include α)	A 1	5	A1: Simplified correct final answer. $\begin{pmatrix} 0 & 3 \end{pmatrix}$
	$=\left(\frac{1}{4}-\frac{1}{10}\right)^g$ OF (must include g)	AI	5	Condone $\left \frac{1}{10} \sin \theta - \frac{3}{4} \right g$
(ii)	When this reaction is zero,			
	$\begin{pmatrix} 3 & 9 \\ \sin \theta \end{pmatrix} a = 0$	M1		M1. Dutting their reaction actual to zero
	$\left(\frac{1}{4},\frac{1}{10},\frac{1}{10},\frac{1}{9},$	1/11		min. Futting men reaction equal to zero.
	$\sin\theta = \frac{5}{6}$			
	6 Ais 56.4° above horizontal	Δ 1	2	A1: Correct angle Accent AWPT 56 44
	Total		<u> </u>	ATT. Concertangle. Accept AWRT 50.44.

Q	Solution	Marks	Total	Comments
9 (a)	$EPE = \frac{\lambda x^2}{2l}$			
	$=\frac{1800 \times (4)^2}{2 \times 6}$	B1 M1		B1: Extension = 4. M1: Substitution of 6, 1800 and their
(b)	= 2400 J	A1	3	extension into EPE formula. A1: Correct EPE
(0)	$\frac{1800 \times (x)^2}{2 \times 6} = \frac{1}{2} \times 200 \times 8^2$	M1		M1: Equation with EPE and KE terms, both correct.
	$w^2 = 42.67$			
	x = 42.07 x = 6.53 m	A1		A1: Correct extension. Accept $\frac{8\sqrt{6}}{3}$ or
	Distance from <i>O</i> is 12.5 m	A1	3	6.53 or AWRT 6.532. A1: Correct distance. Accept 12.5 or AWRT 12.53.
(c)	Resistance force is 800 N			
(0)	Work done by resistance force is			
	$800 \times (x+6)$	B1		B1: Correct work done by resistance force.
	C of Energy gives			
	$\frac{1800 \times (x)^2}{2 \times 6} + 800 \times (x+6) = \frac{1}{2} \times 200 \times 8^2$	A1		A1: EPE correct.
	150^{-2} + $800(+6)$ - 6400			A1: Correct equation.
	$150x^2 + 800(x+6) = 6400$	A 1		Al. Constant in faction and in anith an
	$3x^{2} + 16x - 32 = 0$ or $150x^{2} + 800x - 1600 = 0$	AI		brackets.
	$x = \frac{-16 \pm \sqrt{16^2 + 4 \times 3 \times 32}}{16^2 + 4 \times 3 \times 32}$	dM1		dM1: Solving their quadratic equation with correct formula and correct
	2×3	GIVII		substitution
	x = 1.5497	A1		A1: Correct positive solution stated. Accept 1.54 or 1.55 or AWRT 1.55.
	Distance from <i>O</i> is 7.55 m	A1	8	A1: Correct distance from <i>O</i> . Accept 7.55 or 7.54 or AWRT 7.55.
	OR			
	Use d for distance: $800 \times d$	(B 1)		B1: Correct work done by resistance
	C of Energy gives			force.
	$1800 \times (d-6)^2$ and 1 and a^2	(M1A1)		M1: Three energy terms, KE, Work Done
	$\frac{1}{2 \times 6} + 800 \times d = -\frac{1}{2} \times 200 \times 8^2$	(A1A1)		and EPE.
	$150d^2 - 1000d - 1000 = 0$	(A1)		A1: Seeing $d - 6$ in EPE
	$3d^2 - 20d - 20 = 0$			A1. EFE correct. A1: Correct equation.
	$x = \frac{-20 \pm \sqrt{20^2 + 4 \times 3 \times 20}}{}$	(dM1)		A1: Correct quadratic equation with no
	2×3	(A1)		dM1: Solving their quadratic equation
	a = 1.55	()		A1: Correct distance from <i>O</i> . Accept 7.55
			14	or 7.54 or AWRT 7.55.
	Total TOTAL		14 75	

Version 1.0

General Certificate of Education (A-level) January 2012

Mathematics

MM2B

(Specification 6360)

Mechanics 2B

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

MM2B				
Q	Solution	Marks	Total	Comments
1(a)	KE at P = $\frac{1}{2} \times 25 \times 60^2$ = 45 000 J	M1 A1	2	correct
(b)	change in PE as it falls: $mgh = 25 \times 9.8 \times 34$ = 8330	M1 A1	2	correct ISW
(c)(i)	using Conservation of Energy: KE at ground = 8330 + 45 000 = 53 330 J (= 53 300 J to 3sf)	M1 A1	2	ft C's (a) and (b) ft if M1 gained in (a) and (b)
(ii)	speed of packet is $\sqrt{\frac{53330}{\frac{1}{2} \times 25}}$ = 65.3 m s ⁻¹	M1 A1	2	ft C's (c)(i) CAO
	Total		8	
2(a)	using $\mathbf{F} = m\mathbf{a}$: $\mathbf{a} = (6t - 1.2 t^2) \mathbf{i} + 2 e^{-2t} \mathbf{j}$	M1 A1	2	ie dividing by 50
(b)	$\mathbf{v} = \int \mathbf{a} \mathrm{dt}$ = (3 t ² - 0.4 t ³) $\mathbf{i} - \mathrm{e}^{-2t}\mathbf{j} + \mathbf{c}$ when $t = 0$, $\mathbf{r} = 7$ $\mathbf{i} - 4$ \mathbf{i}	M1A1		condone lack of + c; M1 one term correct
	$\mathbf{c} = 7 \mathbf{i} - 3\mathbf{j}$ $\mathbf{v} = (7 + 3 t^2 - 0.4 t^3) \mathbf{i} - (3 + e^{-2t}) \mathbf{j}$	m1A1	4	ft from ke $^{-2t}$ in (b); just adding 7 i – 4 j , m0 accept unsimplified. CAO
(c)	when $t = 1$, $\mathbf{v} = 9.6 \mathbf{i} - 3.135 \mathbf{j}$ speed = $\sqrt{9.6^2 + 3.135^2}$	M1A1 m1		ft from (b)
	$= 10.1 \text{ ms}^{-1}$	A1	4	ft from (b)
	Total		10	

MM2B (con	t)				
Q	Solution		Marks	Total	Comments
3 (a)	► S				
	72g 28g F				accept 'weight of man' or $w_{\rm m}$ etc for 72g
	force diagram		B2	2	B1 for any error
(b)(i)	moments about P: $72g \times 6 \times \cos 69 + 28g \times 4 \times \cos 69$ $= S \times 8 \times \sin 69$ $(432g + 112g)\cos 69 = 8 S \sin 69$		M1 A1A1		3 terms including distance and angles A1 2 correct terms
	S = 255.8 = 256N		A1	4	accept division seen eg $\frac{544g}{8\tan 69}$
(ii)	resolve vertically: R = 28g + 72g				
	= 100g resolve horizontally: S = F		B1 B1		
	using $F = \mu R$: $\mu = 256 \div 100g$ = 0.261		M1 A1	4	
		Total		10	
4(a)	using power = force × velocity power = $(25 \times 42) \times 42$ \therefore power is 44 100 watts		M1 A1	2	
(b)	when speed is 15 m s ⁻¹ , max force exerted is $\frac{44100}{15}$				
	= 2940N		B1		
	resistance force is $25 \times 15 = 375N$ accelerating force is $2940 - 375N$ = 2565		M1		
	using $F = ma$ 2565 = 1500a $a = 1.71 \text{ m s}^{-2}$		m1 A1	4	
		Total		6	

MM2B (con	t)			
Q	Solution	Marks	Total	Comments
5	R = mg F = 0.85 mg	M1 A1		
	$\frac{mv^2}{r} = 0.85 mg$	M1A1		condone $\frac{mv^2}{r} = 0.85R$ (for M1A1)
	$v^2 = 34 \times 0.85 \times g$ = 283.22	ml		dependent on both M1s
	$v = 16.8 \text{ m s}^{-1}$	A1	6	
	Total		6	
6(a)	using $F = ma$			
	$0.4 \frac{\mathrm{d}v}{\mathrm{d}t} = 2 - 4v$	M1		
	$\frac{\mathrm{d}v}{\mathrm{d}t} = -10 \ (v - 0.5)$	A1	2	Needs line above
(b)	hence $\int \frac{1}{v - 0.5} dv = -\int 10 dt$			
	$\ln(v - 0.5) = -10t + c$	M1A1 m1		M1 for any side integrated correctly m1 for $+ c$ (and M1 gained)
	$v - 0.5 = Ce^{-10t}$			
	r = 0, v = 1 $\therefore C = 0.5$	A1		
	$\therefore v = 0.5 + 0.5 \mathrm{e}^{-10t}$	A1	5	condone $v = 0.5 + e^{-10t - 0.693}$
(c)	when $v = 0.55, 0.55 = 0.5 + 0.5e^{-10t}$	M1		substitute 0.55 into C's (b), after finding <i>c</i> , possible numerical error
	$10 = e^{10t}$	A1		
	$t = \ln 10 \div 10$ = 0.230	A1	3	
	Total		10	

PMT

MM2B (con	t)			
Q	Solution	Marks	Total	Comments
7(a)	by conservation of energy: $\frac{1}{m(u)^2} = \frac{1}{m(u)^2} + ma^2 a$	M1		M1 for 3 terms, 2 KE and PE; not
	$\frac{1}{2}m(u) = \frac{1}{2}m(v) + mg 2u$ $v^{2} = u^{2} - 4ag$	A1	2	$v^2 = u^2 + 2as$
(b)(i)	at point A; $T_I = \frac{m(v)^2}{a} - mg$	M1A1		both signs incorrect M1
	at point B; $T_2 = \frac{m(u)^2}{a} + mg$	A1		either correct M1A1
	$\frac{T_1}{T_2} = \frac{2}{5}$	B1		or $5T_A = 2T_B$ or $T_1 = 2T$, $T_2 = 5T$
	$5\left(\frac{m(v)^2}{a} - mg\right) = 2\left(\frac{m(u)^2}{a} + mg\right)$	A1		САО
	$5\left(\frac{m(u^2-4ag)}{a}-mg\right)$			
	$=2\left(\frac{m(u)^2}{a}+mg\right)$			
	$5u^2 - 20ag - 5ag = 2u^2 + 2ag$ $3u^2 - 27ag$	ml		from ratio 2 : 5 or 5 : 2 and one tension equation correct
	$u = 3\sqrt{ag}$	A1	7	condone $\sqrt{9ag}$
(ii)	$u^2 = v^2 + 4ag \rightarrow v = \sqrt{5ag}$	B1		condone $v^2 = 5ag$
	ratio $u: v = 3: \sqrt{5}$	B1	2	accept 1.34 : 1 or 1 : 0.745
	Total		11	

0	Solution	Marke	Total	Comments
Y	Solution	WIAI KS	10141	
8(a) (b)	using EPE = $\frac{\lambda x^2}{2l}$, EPE = $\frac{32 \times 2.2^2}{2 \times 0.8}$ = 96.8 J by C of Energy, when next at rest, EPE (initial) = work done against friction + EPE (when at rest)	M1 B1 A1 M1A1	3	B1 for 2.2 M1A1 for work done by friction or 5 <i>F</i>
	$96.8 = F \times 5 + \frac{32 \times 1.2^2}{2 \times 0.8}$	M1A1		M1 3 terms; A1 all correct
	5F = 96.8 - 28.8 frictional force is 13.6N	B1 A1	6	B1 28.8
(c)	at B, tension is $\frac{32 \times 1.2}{0.8}$ = 48N tension > friction	B1		
	hence particle starts to move	E1	2	
(d)	when particle is next at rest, work done against friction is EPE at B $13.6 \times \text{distance} = 28.8$ distance is 2.1176	M1 A1	2	САО
	= 2.12 m			ft from M1 in (d)
(e)	total distance is $5 + 2.1176$	B1	1	or total distance \times 13.6 = original EPE, 96.8
	= /.12 m			total distance is /.12 m
	Total		14	
	TOTAL		75	

Version 1.0

General Certificate of Education (A-level) June 2012

Mathematics

MM2B

(Specification 6360)

Mechanics 2B

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aga.org.uk

Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Q	Solution	Marks	Total	Comments
1 (a)	$KE = \frac{1}{2} \times 76 \times 28^2$	M1		All terms correct
	= 29792 J	A1	2	
	= 29 800 J			
(b)	Change in PE: $mgh = 76 \times 9.8 \times 31$ J	M1		All terms correct
	$= 23\ 088.8$ J	A1	2	
	$= 23\ 100$ J			
(c)(i)	KE when touches down on ground			
	= 29 792 + 23 088.8J - 52 881 J	M1		Their values, one correct
	= 52 8813 = 52 900 J	A1	2	САО
(ii)	Speed of Alan is $\sqrt{\frac{52881}{1.076}}$	M1		
	$\sqrt{\frac{1}{2} \times 70}$ = 37.304 m s ⁻¹			
	$= 37.3 \text{ m s}^{-1}$	A1	2	CAO
	Total		8	
2(a)(i)	$a = \frac{dv}{dt}$			
	$= 12t + 8e^{-4t} m s^{-2}$	M1A1	2	M1 for either term correct
(ii)	When $t = 0.5$, $a = 6 + 8 \times e^{-2}$	m1	2	Contana 7.07
	$= 7.08 \mathrm{~m~s}$	AI	Z	SC1 for 7.1 with no working
(b)	Using $F = ma$:			
	$F = 4 \times 7.08$ $= 28.3 \text{ N}$	B1ft	1	Ft from value awarded A1
	2010 11	2110		
(c)	$r = \int v \mathrm{d}t$	M1		At least two terms correct
	$= 2t^3 + \frac{1}{2}e^{-4t} + 8t + c$	A1		Does not need $+c$
	When $t = 0, r = 0 \to c = -\frac{1}{2}$	m1		Does not need $c = -\frac{1}{2}$
	$r = 2t^3 + \frac{1}{2}e^{-4t} + 8t - \frac{1}{2}$	A1	4	Need <i>r</i> , <i>s</i> (or words)
	Total		9	

PMT

MM2B				
Q	Solution	Marks	Total	Comments
3(a)(i)	Moments about <i>AB</i> :			
	$1.6 \times 4 + 0.4 \times 8 = 2 \times x$	M1A1		M1 for 2 terms correct
	x = 4.8			
	Distance is 4.8 cm	A1	3	
(ii)	Moments about <i>AD</i> :			
	$1.6 \times 6 + 0.4 \times 12 = 2 \times y$	M1A1		M1 for 2 terms correct
	y = 7.2			
	Distance is 7.2 cm	Al	3	SC2+SC2 for (a)(i) and (a)(ii) reversed
(b)	Moments about A: $1.6 \propto 6 \pm 0.4 \propto 12 = 12 \times T$	M(1 A 1		M1 for 1 side of equation
	$1.0g \times 0 + 0.4g \times 12 - 12 \times 1_B$	MIAI		Or using above, memoria about 4
				12 x T_{-} = 7.2 x 2g (ft for M marks)
	$T_{\rm p} = 1.2 \alpha = 11.8 {\rm N}$	Δ1		$12 \wedge 1B = 7.2 \wedge 2g$ (it for Williams)
	Resolve vertically: $T_4 + T_p = 2g$	M1		
	$T_{4} = 0.8g = 7.84 \text{ N}$	A1	5	1.2 and 0.8 is zero marks
			C C	If 11.8 and 7.8 as final answer, must lose
				1 mark somewhere
	Total		11	
4 (a)	Distance of particle from the origin is			
	$\{(4\cos 3t)^2 + (4\sin 3t)^2\}^{\frac{1}{2}}$	M1		
	- A which is a constant	Δ1	2	
	· particle is moving in a circle centre the	AI	2	
	origin			
	onghi			
	dr			
(b)	$\mathbf{v} = \frac{1}{dt}$			
	$v = -12 \sin 3t i - 12 \cos 3t i$	M1A1	2	M1 for either term correct
	d v			
(c)	$\mathbf{a} = \frac{1}{dt}$			
	$a = -36 \cos 3t i + 36 \sin 3t j$	M1A1	2	M1 for either term correct
	U U			
(d)	$\mathbf{a} = -9 (4 \cos 3t \mathbf{i} - 4 \sin 3t \mathbf{j})$			
	$= -9 \mathbf{r}$			
	k = -9	B2	2	B1 for 9
(e)	Acceleration is towards centre of circle	E1	1	
	(or origin)		6	
	Total		9	

MM2B				
Q	Solution	Marks	Total	Comments
5(a)	For particle <i>B</i> ,			
	tension in string = $2.1g$ N	B1		
	Resolve horizontally for particle A:			2
	$m \omega^2 n - T$	M1		Or $m_1\omega^2 r = m_2 g$ or $\frac{m_1v^2}{m_1} = m_2 g$
	$m\omega$ $r = 1$	1011		(condone lack of 1 and 2)
	$1.4\omega^2 \times 0.3 = 2.1\sigma$	A1		(condone new of 1 and 2)
	$\omega^2 = 49$			
	Angular velocity is 7 rad/sec	A1	4	
(b)	Using $v = r \omega$:			
	speed = 0.3×7	M1	2	
	$= 2.1 \text{ m s}^{-1}$	Al	2	Part (b) marks can be awarded in (a)
(c)	Time taken is $2\pi / \omega$	M1		2лг
				Or $\frac{2\pi}{2.1}$
	$=\frac{2\pi}{2}=0.898$ sec			2π
	$\frac{1}{7}$ - 0.090 sec	A1	2	Accept -7
				(0.895 M1A0)
	Total		8	
6(a)	Using conservation of energy:			
	$\frac{1}{2}mv^2 = mgh$	M1		M1 for 2 or 3 terms, 1 KE and 1 or 2 PE
	1 .			
	$\frac{1}{2}mv^2 = mg2.4(1-\cos 18)$	m1A1		m1A1 for finding <i>h</i>
	$v^2 = 4.8g(1 - \cos 18)$			
	= 2.302			
	$v = 1.52 \text{ m s}^{-1}$	A1	4	Condone 1.51
	Descluting ventically			
(D)		M1		Corrot 3 torms
	$T = mg + \frac{mv^2}{a}$			Correct signs
	$-22z + 22 \times 2.302$	111		
	$= 22g + \frac{2279}{2.4}$			
	= 236.7 N	A1	3	
	= 237 N			Accept 236 N
	Total		7	

5

MM2B				
Q	Solution	Marks	Total	Comments
7(a)	Using $F = ma$:			
	$m\frac{dv}{dt} = 49 - 9.8v$ or $5g - 9.8v$	M1		Need to see $m \frac{dv}{dt}$ or $5 \frac{dv}{dt}$ or $a = \frac{49 - 9.81}{5}$
	$\therefore \frac{\mathrm{d}v}{\mathrm{d}t} = -1.96 (v-5)$	A1	2	Must see <i>m</i> terms (not $a =$)
(b)	$\int \frac{\mathrm{d}v}{v-5} = -1.96 \int \mathrm{d}t$	M1		And one side integrated
	$\ln(v-5) = -1.96t + c$	A1A1		Need $+ c$, A1 each side
	When $t = 0$, $v = 7 \implies c = \ln 2$	A1		OE
	$\ln\frac{v-5}{2} = -1.96t$			
	$\frac{v-5}{2} = e^{-1.96t}$			
	$v = 5 + 2e^{-1.96t}$	A1	5	CAO
	Total		7	

MM2B				
Q	Solution	Marks	Total	Comments
8 (a)	Initial EPE = $\frac{\lambda x^2}{2l}$			
	$=\frac{120 \times (0.5)^2}{2 \times 5}$	M1		M1 for formula with extension 0.5
	= 3 J	A1		
	Initial KE is $\frac{1}{2} \times 0.4 \times 9^2 = 16.2 \text{ J}$			
	When block is at <i>A</i> , $\frac{1}{2}mv^2 = 3 + 16.2$	M1		
	$v^2 = 19.2 \div 0.2 = 96$			
	Speed is 9.80 m s ^{-1}	A1	4	Accept $4\sqrt{6}$; condone 9.79
(b)(i)	Normal reaction is $mg = 0.4g$	M1		
	Frictional force is $0.4\mu g N$	A1		
	Work done by frictional force is			
	$5.5 \times (0.4\mu g)$ or $2.2\mu g$	m1		
	C of Energy, when at A , gives	M1		Three terms, eq initial energy in (a)
	$19.2 - 5.5 \times (0.4 \mu g) = \frac{1}{2} \times 0.4 \times v^2$			(=3 or 19.2); work done; KE at A.
		A1		Fully correct
	$\frac{19.2 - 2.2 \mu g}{\sqrt{2} - 2.2 \mu} = 0.2 \nu^2$			
	$v = \sqrt{96 - 11 \mu g}$	A1	6	Ft $v = \sqrt{(v^2 \operatorname{in}(\mathbf{a})) - 11 \mu g}$
	1			
(ii)	Speed when rebounding is $\frac{1}{2}\sqrt{96-11\mu g}$	B1ft		
	Block is stationary at <i>B</i>			
	$\frac{1}{2} \times 0.4 \times \frac{1}{4} (96 - 11 \mu g) - 2.2 \mu g$	M1		Three terms
	$120 \times (0.5)^2$			
	$=\frac{1}{2\times 5}$	Al		Third term correct with sign
	$\frac{1}{2} \times 0.1(96 - 11\mu g) - 2.2\mu g = 3$			
	$4.8 - 2.75 \mu g = 3$	A1	_	Or $4.8 - 0.55 \mu g - 2.2 \mu g = 3$
	$\mu = 0.0668$	Al	6	
			10	
	IUIAL		13	

Version

General Certificate of Education (A-level) January 2013

Mathematics

MM2B

(Specification 6360)

Mechanics 2B

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.
Q	Solution	Marks	Total	Comments
1(a)	$KE = \frac{1}{2} \times 0.16 \times 11^2$	M1		
	= 9.68 J	A1	2	
(b)	Change in PE: $mgh = 0.16 \times 9.8 \times 5$ = 7.84 J	M1 A1	2	
(c)(i)	KE when reached point <i>B</i> = 9.68 - 7.84 J = 1.84 J	M1 A1	2	'(a)' – '(b)' cao
(ii)	Speed of ball is $\sqrt{\frac{1.84}{\frac{1}{2} \times 0.16}}$	M1		If added in (c)(i) 0 marks for (c)(i) 14.8 M1A1for c (ii)
	$= 4.7958 \text{ m s}^{-1}$ = 4.80 m s ⁻¹	Al	2	Condone 4.8,4.79
	Total		8	
2(a)	$\mathbf{a} = \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t}$	M1		
	$= -4\pi \sin\left(\frac{\pi}{3}t\right)\mathbf{i} - 18t\mathbf{j}$	A1	2	M1 for either term correct Accept $-12 \times \frac{\pi}{3} \sin\left(\frac{\pi}{3}t\right) \mathbf{i} - 18t\mathbf{j}$ condone
(b)(i)	Using $\mathbf{F} = m\mathbf{a}$: $\mathbf{F} = 4 \times \left[-4\pi \sin\left(\frac{\pi}{3}t\right)\mathbf{i} - 18t\mathbf{j} \right]$ $\mathbf{F} = -16\pi \sin\left(\frac{\pi}{3}t\right)\mathbf{i} - 72t\mathbf{j}$	M1 A1	2	Or either term correct
(ii)	When $t = 3$, $\mathbf{F} = 4 \times [-4\pi \sin(\pi)\mathbf{i} - 54\mathbf{j}]$ = $-216\mathbf{j}$ Magnitude is 216	B1 B1ft	2	ft finding magnitude of their F
(c)	$\mathbf{r} = \int \mathbf{v} \mathrm{d}t$	M1		either term correct
	$= \frac{36}{\pi} \sin\left(\frac{\pi}{3}t\right) \mathbf{i} - 3t^3 \mathbf{j} + \mathbf{c}$	A1		No need for c (otherwise cao) Condone $\frac{12}{\left(\frac{\pi}{3}\right)}$
	When $t = 3$, $\mathbf{r} = 4\mathbf{i} - 2\mathbf{j}$ $\rightarrow -81\mathbf{i} + \mathbf{c} = 4\mathbf{i} - 2\mathbf{j}$	M1		
	c = 4i + 79j	A1		
	$\mathbf{r} = \left\{\frac{36}{\pi}\sin\left(\frac{\pi}{3}t\right) + 4\right\}\mathbf{i} + \{79 - 3t^3\}\mathbf{j}$	A1	5	cao
	Total		11	

Q	Solution	Marks	Total	Comments
3	Force acting against gravity is $mg\sin\theta$			
	Force acting against gravity and resistance			Condone $\cos\theta$ or -1 for M marks
	is $mg\sin\theta + 8000$	M1		
	$= 1500 \times g \times \sin\theta + 8000$			
	= 8588 N or 8590 N	Al		
	Using power = force \times velocity			
	$= 8588 \times 22$	M1		
		dep		
	= 188 936 W	AÎ		
	$= 189 \mathrm{kW}$	A1	5	Accept 188.9 or 188
	Total		5	
4(a)	Symmetry	E1	1	
(b)	Moments about <i>AB</i> :			
	$300\sigma.15 + 100\sigma.5 + 300\sigma.15 = 700\sigma.x$	M1A1		(condone lack of σ)
	$r = \frac{9500}{1000}$			M1 needs correct total marks
	^x 700			
	95		2	
	$= \frac{1}{7}$ or 13.6 cm	AI	3	
	,			
(c)	Distance from HG is 16.4 cm	B1		
	15			
	$\tan\theta = \frac{1642857}{1642857}$	M1		Seeing both 15,16.4 and tan
	0.012037			
	= 0.913043	. 1		
	$\theta = 42.39/4^{\circ}$ $\theta = 42^{\circ}$	AI		[48° probably D1 M1]
	v = 42	A 1	4	[40 probably D1, W11]
		AI	4	NB $\frac{15.0}{15}$ etc \Rightarrow 42° no marks
	Total		8	1.5
	10000		U	

0	Solution	Marks	Total	Comments
5(a)	Using $F = ma$:			
	$4u^{\frac{1}{3}} - 12 dv$	D1		
	$-4V^{*} - 12 \frac{dt}{dt}$	DI		
	$\therefore \frac{\mathrm{d}v}{\mathrm{d}v} = -\frac{1}{\mathrm{v}^3}$			
	dt 3			
	$-3\int \frac{\mathrm{d}v}{1} = \int \mathrm{d}t$	M1		condona 3 incorrect side
	$v^{\overline{3}}$	1011		condone –, s incorrect side
	<u>2</u>			
	$-3 \times \frac{v^3}{2} = t + c$	A1		condone lack of $+ c$
	$\frac{2}{3}$			
	$9 \frac{2}{3}$			
	$-\frac{1}{2}v^{3} = t + c$			
	When $t = 0$, $v = 8 \implies c = -18$	M1A1		
	$-\frac{9}{2}v^{\frac{2}{3}} = t - 18$			
	$\frac{2}{2}$			
	$v^{\frac{2}{3}} = 4 - \frac{2}{2}t$			
	9			
	$v = \left(4 - \frac{2}{2}t\right)^{\frac{1}{2}}$	A1	6	
(b)	Particle is at rest when $4 - \frac{2}{2}t = 0$			
	$\frac{9}{100000000000000000000000000000000000$	B 1	1	
	Tot	al	7	
6(a)	Resolve vertically:			
	$T\cos\theta = mg$	M1		M1 for $T\cos\theta$ or $T\sin\theta$ and mg
	$34\cos\theta = 2 \times 9.8$	A1		
	19.6			
	$\cos \theta = \frac{1}{34}$			
	$\theta = 54.8^{\circ}$	A1	3	
(b)	Resolve horizontally for particle:			
	$\frac{mv^2}{T} = T\sin\theta$	M1		
	r	IVI I		M1 for $I \cos\theta$ or $I \sin\theta$
	$_{2}$ 34 sin 54.8 × 0.8	A1 ft		
	$v^{2} =$	from		
	-	(a)		
	$v^2 = 11.113$			
	Speed is 3.33 m s^{-1}	A1	3	Accept 3.34
	Time talen is 2-s / s			
(C)	1 ime taken is $2\pi r / v$	M1		Or find ω and use $\frac{2\pi}{2\pi}$
	- 151	A 1 C		ω
	= 1.51 sec	Alft	2	
	l	ลเ	ð	

Q	Solution	Marks	Total	Comments
7(a)	Using conservation of energy:			
	$\frac{1}{2}mv^2 = \frac{1}{2}mu^2 - mgh$	M1		for 3 terms, 2 KE and 1 PE
	$\frac{1}{2} \times 3 \times v^{2} = \frac{1}{2} \times 3 \times 4^{2} - 3 \times g \times 1.2 (1 - \cos 25)$	M1 A1		M1A1 for finding h [M1 for 1.2(1 - cos 25 or sin 25)]
	$v^2 = 4^2 - 2.4 \times g(1 - \cos 25)$			
	$v^2 = 16 - 2.2036$			
	$v = 3.71 \mathrm{m s^{-1}}$	A1	4	Accept 3.7, 3.70, 3.72
(b)	Resolving radially: mv^2			M1 accept $\cos 25$ or $\sin 25 + $ or $- \sin 25$
	$T = mg \cos 25 + \frac{mv}{a}$	M1A1		and $\neq 2$
	= 26.645 + 34.491			A1 fully correct and substituted
	= 61.1 N	A1	3	Accept 61.0 or 61
	Total		7	

Q	Solution	Marks	Total	Comments
8 (a)	Work done = $\int_{0}^{e} \frac{\lambda x}{l} dx$	M1		SC1 $\int_{0}^{e} \frac{\lambda e}{l} de$
	$= \left[\frac{\lambda x^2}{2l}\right]_0^e$	A1		SC1 $\int \frac{\lambda x}{l} dx$ with no limits
	$= \frac{\lambda e^2}{2l}$	A1	3	
(b)(i)	Using $T = \frac{\lambda x}{l}$:			
	$5g = \frac{392x}{1.6}$ $5g \times 1.6$	M1		
	$x = \frac{3}{392}$ $= 0.2$			
	Extension is 0.2 m	Al	2	
(ii)	When extension is 0.6 m, EPE = $\frac{\lambda x^2}{2l}$	B1		B1 for 0.6
	$=\frac{392 \times (0.6)^2}{2 \times 1.6}$	M1		
	= 44.1 J	Al	3	
(iii)	Let <i>y</i> metres be distance particle is above			
	A. C of energy, when particle has speed 0.8 m s^{-1} , gives			
	$5 \times g \times y + \frac{392 \times (0.6 - y)^2}{2 \times 1.6} + \frac{1}{2} \times 5 \times 0.8^2$	M1A1		M1 4 terms, 2 correct M1A1 4 terms, 3 correct
	$=\frac{392 \times (0.6)^2}{2 \times 1.6}$	A1F		Ft answer to (b)(ii)
	$49y + 122.5(0.6 - y)^{2} + 1.6 = 122.5 \times 0.6^{2}$ $49y - 147y + 122.5y^{2} + 1.6 = 0$ $122.5y^{2} - 98y + 1.6 = 0$			
	$y = \frac{98 \pm \sqrt{98^2 - 4 \times 122.5 \times 1.6}}{2 \times 122.5}$			
	$y = \frac{98 \pm 93.9148}{245}$			
	= 0.016674 and 0.7833	A1		if x used instead of $0.6 - y$, A1 here for $x = 0.5833$
	Speed first becomes 0.8 when $v = 0.0167$	E1	5	
	Total		13	

0	Solution	Marks	Total	Comments
9(a)	Smooth, hence reaction is perpendicular	E1	1	
	to possible movement			
(b)				
		•		
	R	\ 1		
		\sim	S	
		\wedge		
		/	\	
	/	/	\backslash	В
			/ '	2
	θ			
	A			
		mg		
		B 2	2	B1 for 2 forces correct
(c)	Resolving along the rod:			Or geometrically:
	$S\cos\theta = mg\sin\theta$	M1A1		three forces act through a point B1
				M1 is for 2 or 3 terms; 1 term correct
	Moment about $C = S^2 a \cos \theta \sin \theta$			(could be horizontal force at C used)
	Moment about C. 5 Zucos 6 .sm 6			[lorces act through point D]
	$= mg(2a\cos\theta - \frac{1}{2}l)\cos\theta$	M1A1		$AD\cos 2\theta = \frac{l}{c}\cos\theta$ M1A1
				2
	$4a.S\sin\theta = mg(4a\cos\theta - l)$			$AD\cos\theta = 2a\cos\theta$ M1
				40,005,20
	Dividing: $4a \tan \theta = \frac{4a \cos \theta - i}{\sin \theta}$			$l = \frac{4a\cos 2\theta}{\cos \theta} \text{A1}$
	$l = 4a\cos\theta - 4a\sin\theta\tan\theta$			
	$l = \frac{4a\cos 2\theta}{2}$	A1	5	
	$\cos heta$		-	

Q	Solution	Marks	Total	Comments
9 cont	or			
	Resolving perpendicular to S: $R \cos\theta = mg \cos 2\theta$	(M1A1)		
	Moments about A: $P_{2} = m \frac{1}{2} \log \theta$	() (1 A 1)		
	$R \ 2a\cos\theta = mg \pm l \cos\theta$	(MIAI)		
	$4a R = mgl$ $4amg \cos 2\theta = mgl \cos \theta$ $l = \frac{4a \cos 2\theta}{\cos \theta}$	(A1)		
	or			
	Resolving horizontally: $R \sin \theta = S \cos 2\theta$ Resolving vertically: $R \cos \theta + S \sin 2\theta = mg$	(M1A1)		Both attempted for M1 Both correct for A1
	Moments about <i>A</i> : $R \ 2a\cos\theta = mg \frac{1}{2} l \cos\theta$	(M1A1)		
	$4a R = mgl$ $R \cos \theta + R \frac{\sin \theta}{\cos 2\theta} \sin 2\theta = 4a \frac{R}{l}$			
	$l = \frac{4a\cos 2\theta}{\cos \theta}$	(A1)		
	Total		8	
	TOTAL		75	

Version 1.0

General Certificate of Education (A-level) June 2013

Mathematics

MM2B

(Specification 6360)

Mechanics 2B

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
$\checkmark or \ ft \ or \ F$	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a)	$y = \frac{ds}{ds}$	M1		
I (a)	$v = \frac{1}{dt}$	1111		
	$=24t^{2}$	A1	2	
(b)	$a = \frac{dV}{dt}$			
	=48t	B1		
		21		
	When $t = 2, a = 96$	B1		
	Using $F = ma$			
	$F = 3 \times 96$	M1		
	= 288 N	A1	4	
	Total		6	
2 (a)	$KE = \frac{1}{2} \times 52 \times 7^2$	M1		
	= 1274 J	Δ1	2	
	= 1270 J	711	2	
(b)	Change in PE: $mgh = 52 \times 9.8 \times 8$ = 4076 8	M1		
	- 4070.8	AI		
	Carol's KE when she reaches the net			
	= 1274 + 4076.8 J = 5350.8 J	. 1	2	
	= 5350 J	Al	3	
	5350.8			
(c)	Speed of Carol is $\sqrt{\frac{1}{1} \times 52}$	M1A1		
	$\sqrt{2^{-14}}$			
	= 14.3437 m/s = 14.3 m s ⁻¹	A1	3	
	Total		8	
3 (a)	$v = \int a \mathrm{d}t$			
	$=(20t^2+t^3)\mathbf{i}-5e^{-4t}\mathbf{j}+\mathbf{c}$	M1A1		M1 for either term correct
	W $t = 1$			Condone no '+ c'
	when $t = 1$, 6 i - 5e ⁻⁴ i = 21 i - 5e ⁻⁴ i + c	M1		Finding '+ c': not using $c = 6i - 5e^{-4}i$
		1,11		
	$\mathbf{c} = -15\mathbf{i}$	A1	_	
	$\mathbf{v} = (20t^2 + t^3 - 15)\mathbf{i} - 5\mathbf{e}^{-4t}\mathbf{j}$	A1	5	
ക	When $t = 0$, $y = -15i - 5i$	M1		
(U)	-101 - 0	1711		
	Speed is $\sqrt{15^2 + 5^2}$	M1		
	$= 15.8 \text{ m s}^{-1}$	A1	3	Accept $5\sqrt{10}$
				x
	Total		8	

Q	Solution	Mark	Total	Comments
4(a)(i)	Moments about Q	M1		Or
	$2.2 \times 25g = T_{\rm P} \times 4.2$	A1		Moments about any point M1A1
	$T_{\rm P} = 13.095 \times g$			Moments about any other point M1
	$T_{\rm P} = 128 \ {\rm N}$	A1		$T_{\rm P}$ A1; $T_{\rm O}$ A1
	Resolving vertically			
	$T_{\rm P} + T_{\rm O} = 25g \text{ or } 245$	M1		
	$T_0 = 117 \text{ N}$	A1	5	
	×			
(ii)	Weight of plank acts through its centre	E1	1	
(b)	Resolve vertically	M1		Could use T rather than T_P , T_O
	$T_{\rm P} + T_{\rm O} = (25 + m)g = 2T_{\rm P}$	A1		Or
	Moments about B	M1		Moments about Q
	$T_{\rm P} \times 5 + T_{\rm O} \times 0.8 = 25g \times 3$	A1		$T_{\rm P} \times 4.2 = 25g \times 2.2 - mg \times 0.8$
	$(25+m)g \times 2.9 = 25g \times 3$			
				$\frac{1}{2} \times (25 + m)g \times 4.2$
				$= 25\sigma \times 22 - m\sigma \times 0.8$
	$2.9m\sigma = 25\sigma \times 0.1$	M1		$2.5g \times 2.2 mg \times 0.0$ $2.9m\sigma = 25\sigma \times 0.1$
	29m = 25	1011		29m = 25
	25/11/ 20			OR
				Moments about any point M1A1
				Moments about any other point M1A1
				Solution M1A1
	25			Solution WIAI
	$m = 0.862$ or $\frac{25}{12}$	A1	6	
	29			
	Total		12	
5	In limiting equilibrium, using $F = \mu R$			
	Frictional force is $0.2 \times mg$	MIAI		
	Resolve horizontally			
	$\frac{m \times 15^2}{100} = 0.2 \times mg$	M1		
	$r = 0.2 \times mg$	1011		
	15^2			
	$r = \frac{1}{0.2 \times g}$			
	= 114.79	A1	4	
	= 115		•	
	Total		4	

Q	Solution	Marks	Total	Comments
6(a)	Using $F = ma$			
	$1600 \frac{dv}{dv} = 4000 - 40v$	M1		
	$\frac{1000}{dt} = 4000 - 40V$	1011		
	dv = 4000 - 40v			
	$\frac{1}{\mathrm{d}t} = \frac{1}{1600}$			
	dv = 100 - v	A 1	2	
	$\frac{1}{\mathrm{d}t} = \frac{1}{40}$	AI	Z	
(b)	$40 - \frac{dv}{dt} = dt$	B 1		
	100 - v	DI		
	$40\int \frac{dv}{dt} = \int dt$	M1		
	$10J_{100-v} - J^{u}$	1011		
	$-40\ln(100 - v) = t + c$	A1		Condone lack of '+ c '
	When $t = 0$, $v = 0 \Rightarrow c = -40 \ln 100$	M1A1		
	$-40\ln(100 - v) = t - 40\ln 100$			
	$t = 40 \ln \frac{100}{100}$			
	100 - v			
	$e^{\frac{t}{40}} - 100$			
	$c = \frac{100 - v}{100 - v}$			
	$v = 100 - 100e^{-\frac{t}{40}}$ or $100(1 - e^{-\frac{t}{40}})$	A1	6	
	Total		8	
7	Using power = force × velocity		-	
	$240\ 000 = F \times 20$	M1A1		
	$F = 12\ 000$	A1		
	Accelerating force is $12000 - 5000$			
	= 7000 N	B1		
	Using $F = ma$	M1		
	$22\ 000a = 7000$			
	$a = 0.318$ or $\frac{7}{10}$ m s ⁻²	A1	6	
	22	111	0	
	Total		6	

Q	Solution	Marks	Total	Comments
8(a)	Using conservation of energy: $\frac{1}{2}m(5u)^2 = \frac{1}{2}m(2u)^2 + 2amg$	M1A1		M1 for 3 [or 4] terms: 2 KE and 1[or 2] PE
	$\frac{1}{2} \times 21 \times u^2 = 2ag$	M1		M1A1 for finding <i>h</i>
	$u = \sqrt{\frac{4ag}{21}}$	A1	4	
(b)	Using conservation of energy with speed at point <i>S</i> to be <i>V</i> :			Or
	$\frac{1}{2}m(5u)^2 = \frac{1}{2}m(V)^2 + amg(1 + \cos 60)$	M1		$\frac{1}{2}m(V)^{2} = amg(1 - \cos 60^{\circ}) + \frac{1}{2}m\left(2\sqrt{\frac{4ag}{21}}\right)$
	$\frac{1}{2}mV^{2} = \frac{1}{2}m(5u)^{2} - 1\frac{1}{2}amg$			
	$V^{2} = 25 \times \left(\frac{37}{21}\right) - 3ag$			
	$V^{2} = \frac{3 \lambda u_{g}}{21}$ Resolving radially at point S:	A1		
	$R = -mg\cos 60 + \frac{m(V)^2}{a}$	M1A1		
	$=-\frac{1}{2}mg+\frac{37mg}{21}$			
	$=\frac{53}{42}mg \text{or} 1.26mg$	A1	5	
	Total		9	

Q	Solution	Marks	Total	Comments
0 (a)(i)	Using $T = \lambda x$			
9(a)(l)	Using $I = \frac{l}{l}$			
	Tension in string is $\frac{60 \times 2.5}{1000}$			
	3			
	= 50 N	B1		
	Frictional force on A [using $F = \mu R$] is $0.4 \times 8 \times \alpha$			
	= 31.36 N	B1		
	which is less than tension in string			
	Thus particle A moves towards the hole	B1	3	
(ii)	Gravitational force on B is $3g = 29.4$	B1		
	which is less than tension in string			
	Thus particle <i>B</i> moves towards the hole	B1	2	
(b)	λx^2			
	$EPE = \frac{32}{2I}$			
	$60 \times (2.5)^2$			
	$=\frac{1}{2\times3}$	M1		
	= 62.5 J	A1	2	
(C)	Let x be the distance B has moved upwards			
	Work done by friction [on A] is			
	31.36 × 0.46	M1		
	= 14.4256			
	= 14.43 J When <i>B</i> is at part, automaion is 2.04 m	Al		
	when <i>B</i> is at rest, extension is $2.04 - x$			
	$EPE = \frac{\lambda x}{2l}$			
	$\frac{2i}{60 \times (2.04 - r)^2}$			
	$=\frac{30\times(2.01-\lambda)}{2\times3}$			
	$=10(2.04-x)^2$ J	B1		
	C of Energy, when particle <i>B</i> is at rest.			
	gives			
	$3 \times g \times x + 10(2.04 - x)^2 + 14.4256$	M1A1		
	= 62.5	A1		
	$10x^{2} - 11.4x - 6.4584 = 0$			$\text{Or } 10x^2 - 11.4x - 6.454 = 0$
	Particle B is first at rest when it has			
	moved upwards 1.56 m	A1	7	Accept 1.55
	Total		14	
	TOTAL		75	

A-LEVEL MATHEMATICS

Mechanics 2B – MM2B Mark scheme

6360 June 2014

Version/Stage: Final V1.0

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Copyright © 2014 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Μ	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	Candidate
sf	significant figure(s)
dp	decimal place(s)

Key to mark scheme abbreviations

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Mark	Total	Comment
1 (a)	$KE = \frac{1}{2} \times 3 \times 8^2$	M1		
	= 96 J	A1	2	
(b)	Change in PE; $mgh = 3 \times 9.8 \times 13$ = 382.2 J = 382 J	M1 A1	2	SC1 380
(c)(i)	Salmon's KE when it reaches the sea = 96 + 382.2J = 478 J	M1 A1	2	(a) + (b) [both non zero] Ft [one correct]
(ii)	Speed of salmon is $\sqrt{\frac{478.2}{\frac{1}{2} \times 3}}$	M1		
	$= 17.8549 \text{ ms}^{-1}$ = 17.9 ms^{-1}	A1	2	Accept 17.8,17.85,17.855, 17.86
	Total		8	

Q	Solution	Mark	Total	Comment
2 (a)	Using $F = ma$	M1		M1 either term
				correct oe
	$a = 4e^{-2t} \mathbf{i} - 2t^3 \mathbf{j}$	A1	2	
(b)	ſ.	M1		M1 for either term
(U)	$v = \int a dt$	1111		correct
	$-2e^{-2t}i^{1}t^{4}i^{+}a$	A1		Ft from (a)
	$= -2e$ $\mathbf{I} = -\frac{1}{2}\iota$ $\mathbf{J} + \mathbf{C}$			oe Condone no $+ c$
	When $t = 0$,			
	-7i - 4j = -2i + c	ml		
	$\mathbf{c} = -5\mathbf{i} - 4\mathbf{j}$			
	$\mathbf{v} = -(2 e^{-2t} + 5)\mathbf{i} - (\frac{1}{2}t^4 + 4)\mathbf{j}$	A1	4	CAO
(c)	When $t = 0.5$,			
	$\mathbf{v} = -(2 e^{-1} + 5)\mathbf{i} - (\frac{1}{2} \times 0.5^4 + 4)\mathbf{i}$	M1A1		
	= -57357i - 403125i			
	Speed is $\sqrt{E \cdot 726^2 + 4 \cdot 021^2}$	M1		
	$\frac{5}{-}$	A 1	4	
	-7.0100	AI	4	MP A() in (a) and last
	01 /.01 1115			rart of (c)
				Do not accept 7
	Total		10	
	i etai			

Q	Solution	Mark	Total	Comment
3	$\overline{X} =$			M1 for at least 4
	$\frac{4 \times 11 + 3 \times 3 + 7 \times 5 + 1 \times 1 + 5 \times 7}{4 + 3 + 7 + 1 + 5}$	M1		correct
	$=\frac{124}{20}$ or 6.2	A1		Accept $\frac{124}{20}$
	\overline{Y} =	M1		
	$\frac{4 \times 2 + 3 \times 6 + 7 \times 9 + 1 \times 4 + 5 \times 6}{20}$			
	$=\frac{123}{20}$ or 6.15	A1		
	\therefore Centre of mass is at (6.2, 6.15)	Alft	5	Do not accept $\frac{124}{20}$ etc
				(6.15,6.2)M2A2 If lamina not used SC2; ie M1,M1
	Total		5	

Q	Solution	Mark	Total	Comment
4 (a)	20 revolutions per minute			
	$= 40\pi$ radians per minute	B1		or $\frac{1}{2}$ revolutions per
	$=\frac{2\pi}{3}$ radians per second	B1	2	second Accept 2.09
(b)	Resolve vertically			
	$T\cos 35 = 0.8g$	M1 A1		M1 if Tsin35 used;
	T = 9.5708 = 9.57 N	A1	3	need g
(c)	Resolve horizontally $T \sin 35 = m\omega^2 r$	M1		M1 condone Tcos35 and $m \frac{v^2}{r}$
	9.57 sin 35 = $0.8 \times r \times \left(\frac{2\pi}{3}\right)^2$	A1 A1		A1 for either side
	r = 1.564	A1	4	
	Radius is 1.56 m			Condone 1.57
	Total		9	

Q	Solution	Mark	Total	Comment
5 (a)	Using conservation of energy :			
	$\frac{1}{2}mv^{2} = \frac{1}{2}mv^{2} + 2amg$	M1		M1 for 3 [or 4] terms
	$2^{mv_p} = 2^{mv_Q} + 2amg$	A1		2 KE and 1[or 2] PE
	$v_Q^2 = 49ag - 4ag$	M1		
	$v_Q^2 = 45ag$			
	$v_Q = \sqrt{45ag}$	A1	4	$v_Q = 3\sqrt{5ag}$
(b)	At Q, T + mg = $\underline{mv_Q^2}$	M1A1		M1 for correct 3
	<i>a</i>			terms
	I = m.45 g - mg	. 1	2	
	= 44mg	Al	3	
	Total		7	

Q	Solution	Mark	Total	Comment
6 (a)	Using $F = ma$			
	$-0.3mv^{\frac{1}{3}} = m\frac{dv}{dt}$			
	$\therefore \frac{dv}{dt} = -0.3v^{\frac{1}{3}}$	B1		Need substitution for a
	$\int v^{-\frac{1}{3}} dv = -\int 0.3 dt$	M1		
	$\frac{3}{2}v^{\frac{2}{3}} = -0.3 t + c$	A1A1		A1 for each side no – sign [B0] could get M1A1
	When $t = 0, v = 8$, $\therefore c = 6$ $\frac{3}{2}v^{\frac{2}{3}} = -0.3 t + 6$	A1		
	$v^{\frac{2}{3}} = -0.2 t + 4$ $v = (4 - 0.2t)^{\frac{3}{2}}$	A1	6	
(b)	When $v = 0$, $4 - 0.2 t = 0$ t = 20	M1 A1	2	
(c)	Integrating $v = (4 - 0.2t)^{\frac{3}{2}}$,			M1 for power of $5/2$
	$x = -2(4-0.2t)^{\overline{2}} + d$	M1A1		Al correct [condone no d]
	When $t = 0$, $x = 0$, $\Rightarrow d = 64$			
	$x = -2(4 - 0.2t)^{\frac{5}{2}} + 64$	A1		
	When speed is 0 ms^{-1} , $t = 20$	M1		
	x = 64	A1	5	
	Total		13	

Q	Solution	Mark	Total	Comment
7 (a)		B2	2	Need 5 forces
				correct
	$\setminus B$			ignore labels
	× S			0
	$\backslash R^D$			B1 for 4 forces
				correct
	88g♥ \\			
	22s			
	60°			
	F A			
	Resolve horizontally			
(D)	$F = S \cos 30$	B1		
	Resolve vertically			
	$R = 88g + 22g - S \sin 30$	B1		
	Moments about A			M1 for correct
	$22g \cdot 3\cos 60 + 88g \cdot 4\cos 60 = 58$	MI		moments about
	55 = 209g			any point
				Resolve once B1
				moments twice
				15 MIAI, BI
	S = 41.8g [409.64]	A1		
	Using $F = \mu R$;			R =873.18
	$S \cos 30 = \mu(110g - S \sin 30)$	M1		F = 354758
	s./2			1 554.750
	$\mu = \frac{3\sqrt{3}}{220a-5}$			
	$41.8\sqrt{3}$			
	$\frac{220-41.8}{220-41.8}$			
	$= \frac{41.8\sqrt{3}}{178.2}$			Accept 0.407,
	$=\frac{19\sqrt{3}}{19\sqrt{3}}=0.406$	A1	6	0.4063,0.41
	81 - 0.00			not 0.4
	If S is horizontal, B1 in (a)			
	In (b) M1 [moments], M1 for friction, B1 [2			
	resolve] 0.439 SC3			
	Total		8	

Q	Solution	Mark	Total	Comment
8 (a)	Resolve perpendicular to plane			
	$R = mg \cos 20$ F = $\mu R = \mu mg \cos 20$ = 0.8 × 4 × gcos 20 = 29.468 = 29.5 N	M1 m1 A1	3	or 0.8 x 36.8359
(b)(i)	As particle moves from C to B; Constant friction acts. Work done by friction is $(x + 2) \times 29.468$	B1		
	Change in PE is $mg(x+2)sin 20$	B1		
	Initial EPE = $\frac{\lambda x^2}{2l}$ = $\frac{120 \times (x-1.5)^2}{2 \times 1.5}$ = 40 (x - 1.5) ²	B1		
	Final EPE = $\frac{120 \times (0.5)^2}{2 \times 1.5}$ = 10	BI		
	$(x + 2) \times 29.468 + mg(x+2)sin 20$ = 40 (x - 1.5) ² - 10 40 x ² - 162.875 x - 5.75 = 0	M1A1 A1		M1 for 4 of these terms at least 2 correct A1 for 3 terms correct with correct signs A1 for equation totally correct
	x = 4.1069 or -0.035 $\therefore x = 4.11$	A1	8	condone 4.10, 4.12, and anything in between,
(ii)	Using $T = \frac{\lambda x}{\lambda}$			
	Tension when particle is at B is $\frac{120\times0.5}{1.5}$ = 40 Frictional force is 29.468 Gravitational force is mg sin 20	B1		
	= 13.407	B1		For both 29.4. and 13.4.
	Using $F = ma$ 4a = 40 + 13.407 - 29.468 = 23.938	M1		Need all terms & correct
	Acceleration is 5.984 = 5.98 ms^{-2}	A1	4	condone 5.99,5.984,5.985
	Total		15	
	IOTAL		15	

A-LEVEL Mathematics

Mechanics 2B – MM2B Mark scheme

6360 June 2015

Version/Stage: Version 1.0: Final

PMT

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Copyright $\ensuremath{\textcircled{O}}$ 2015 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Μ	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

Key to mark scheme abbreviations

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Mark	Total	Comment
1 (a) (i)	$\mathbf{a} = \frac{d\mathbf{v}}{dt}$			
	$\mathbf{a} = -8\sin 2t\mathbf{i} + 3\cos t\mathbf{j}$	B1		All correct
	Using $\mathbf{F} = \mathbf{ma}$			
	$\mathbf{F} = 4 \times \{-8 \sin 2t \mathbf{i} + 3 \cos t \mathbf{j} \}$	M1		Multiplying their a by 4 [must be a vector with at least one trig term]
	$= -32\sin 2t\mathbf{i} + 12\cos t\mathbf{j}$	A1	3	CAO
(ii)	When $t = \pi$, $F = -12$ j	B1		САО
	Magnitude of \mathbf{F} is 12	B1	2	CAO
(b)	$\mathbf{r} = 2 \sin 2t \mathbf{i} - 3\cos t \mathbf{j} + \mathbf{c}$	M1		M1 one term correct
		A1		A1 another term correct
				Condone lack of + c
	When $t = 0$, $r = 2i - 14i$.	m1		m1 use of $+ c [c \neq 0]$
	$\therefore \mathbf{c} = 2\mathbf{i} - 11\mathbf{j}$	Al		A1 CAO
	\therefore r = (2 sin 2t + 2) i – (3cos t+11) i	A1	5	CAO [accept uncollected form and
	, , , , , , , , , , , , , , , , , , , ,			ISW [condone lack of brackets but
				must have – 11j]
	Total		10	

Q	Solution	Mark	Total	Comment
2	Resolve vertically R = 3g + 4g + 5g + 8g R = 20g	B1		Or using $\bar{x} \sum m_i = \sum x_i m_i$ $\sum m_i = 20$ B1
	Taking moments about A $3 \times 4g + AC \times 8g + 6 \times 5g = 4.3 \times 20g$	M1 A1		or moments about any point need 4 non zero terms; could have 20 incorrect all terms either with/without g A1 for all terms correct
	$42 \text{ g} + AC \times 8g = 86\text{g}$ $AC = \frac{44}{8}$ Distance AC is 5.5 m	A1	4	CAO
	Total		4	

Q	Solution	Mark	Total	Comment
3 (a) (i)	P is 2 metres above QR.	B1		Do not accept unsimplified expression
	KE = change in PE = $mgh = 32 \times 9.8 \times 2$ = 64 g or 627.2 J = 627 J	M1 A1	3	Correct terms, any value of h used CAO AWRT
(ii)	Speed of Simon is $\sqrt{\frac{627.2}{\frac{1}{2} \times 32}}$	M1		Ft from their a
	$= 6.26 \text{ ms}^{-1}$	A1	2	CAO [AWRT] Accept square root 4g or 2 root g
(b)	Work done travelling Q to R is $F \times 5$	B1		Needs F times 5
	R = 32 g	B1		CAO [or 313.6]
	Work done = change in energy $\mu \times 32g \times 5 = 64$ g or 627.2	M1		Ft their 32g and their 64g [from a] condone incorrect distance [eg, 7, 9, 4, 2]
	$\mu = 0.4$	A1	4	CAO Or if constant acceleration;
				B1 for 32 g B1 for acceleration = $\pm 2g/5$ or ± 3.92 M1 for $\mu g = 2g/5$
	T -4-1		•	A1 for 0.4
	Total		9	

PMT

Q	Solution	Mark	Total	Comment
4 (a)	Resolve vertically			
	$T_{AP}\cos 20 = 5g$	M1A1		M1 could be sin 20
	-8			A1 correct
	T_{AP} = 52.1 N	A1	3	CAO AWRT
(b)	Resolve horizontally			
	$T_{AP}\sin 20 + T_{BP} = m \frac{v^*}{m}$	M1		Needs all the terms, could be cos 20
	-7 F-	AI		Needs sin 20 or cos 70
	$T_{BP} = 5 \frac{9}{96} - \frac{59}{200} \sin 20$			
	$=\frac{25}{12}\pi^2 - 5\sigma \tan 20$	A1	3	
	3 0 0 3 1 1 2 0			
	AG			
(c)	$T_{4D} = T_{DD}$			
(0)	Γ_{AP} Γ_{BP} 50			
	$\frac{23}{3}v^2 - 5gtan 20 = 52.1 \text{ or } \frac{3}{200} \frac{3}{200}$	M1A1		ft from (a)
	0 00520			
	$\frac{25}{v^2} = 69.9$	A1		CAO PI
	3 - 8 388 or 8 3075			
	v = 2.90	Δ1	4	Or 2.896 or 2.8978 CAO
	v 2.90	111	7	
				2.9 not accepted
	Total		10	

Q	Solution	Mark	Total	Comment
5	900 rpm			
	$=900 \times \frac{2\pi}{50}$ radians per second	M1		Use of $\frac{2\pi}{50}$
	= 30π radians per second	A1		CAO or for $v = 9\pi$ or 28.27 or 28.3
	Minimum reactive force is $m\omega^2 r - mg$ = 0.8 × (30 π) ² × 0.3 – 0.8g	M1		Needs both terms and correct signs could be using v
	= $2131.83 - 7.84$ Minimum magnitude is 2123.99 = 2120	A1		CAO AWRT
	Maximum reactive force is $m\omega^2 r + mg$ = 0.8 × (30 π) ² × 0.3 + 0.8g = 2131.83 + 7.84	M1		Needs both terms and correct signs
	Maximum magnitude is 2139.67 = 2140	A1		CAO AWRT [must be clear which is min/max unless in this order]
	Total		6	

Q	Solution	Mark	Total	Comment
6	Gravitational force is $mg\sin\theta$	M1		Could accept $\cos \theta$
	$= 1400 \times g \times \sin \theta$	A1		CAO
	Accelerating force is ma = 1400× 0.2 = 280	B1		CAO [do not need the 280]
	Total force exerted by engine is $1400 \times g \times \sin \theta + 280 + 4000$ = $1400 \times g \times \sin \theta + 4280$	B1		Need 3 terms [gravity, acc force, 4000 could be wrong sign]; CAO
	Power = 91100 = $(1400 \times g \times \sin \theta + 4280) \times 20$ $1400 \times g \times \sin \theta + 4280 = 4555$	M1 M1 A1		Needs force [ft] times 20 M1 for equation need 4 terms 3 correct or Total force exerted by engine is 91100/20 M1 = 4555 A1
	$1400 \times g \times \sin \theta = 275$			or using F = ma $1400 \times 0.2 = 91100/20 - 4000 - 1400gsin\theta$ need 4 terms 3 correct [ignore signs] B1for 1400x0.2;91100/20M1A1 1400gsin θ M1A1:form equation M1A1
	$\sin \theta = 0.0200$	A1		
	$\theta = 1.15^{\circ}$	A1	9	CAO
	Total		9	

Q	Solution	Mark	Total	Comment
7(a);	Using $F = ma$ $72\frac{dv}{dt} = 72g - 240v$	M1		CAO
	$-\frac{3}{10}\frac{dv}{dt} = v - 2.94$	A1	2	AG; Needs M1 above
(b)	Hence $\int \frac{1}{v-2.94} dv = -\frac{10}{3} \int dt$ $\ln(v-2.94) = -\frac{10}{3}t + c$	M1A1		M1 for either side integrated correctly A1 for all correct
		ml		m1 for $+ c$
	$v - 2.94 = Ce^{-\frac{10}{3}t}$ t = 0, v = 30			
	$\therefore C = 27.06$	A1		CAO condone $1353/50$ accept c = ln 27.06
	$\therefore v = 2.94 + 27.06e^{-\frac{10}{3}t}$	A1	5	CAO condone 27.1m
(c)	30 speed	B2	2	B1 for starting at 30 and basic shape B1 for asymptote of 2.94
	2.94			
	Total		9	

Q	Solution	Mark	Total	Comment
8 (a)	When $x \ge 26$,			
	KE is $\frac{1}{2} \times 70 \times v^2$			
	EPE is $\frac{1456 \times (x-26)^2}{2}$			
	Change in PE is $70 \times g \times x$			
	Conservation of energy :	M1A1		M1 for 3 terms of correct items
	$\frac{1}{2} \times 70 \times v^2 + \frac{1456 \times (x-26)^2}{2 \times 26} = 70 \ g \times x$	A1		A1 for 2 of the 3 types of energy are
	2.2.20			correct [ignore signs]
				[treat an GFE terms as one term]
				A1 for all terms correct [70g is 686]
				Accept 4 terms if PE is on both sides
	$35v^2 + 28(x-26)^2 = 70gx$			
	$5v^2 + 4(x-26)^2 = 98x$			
	$5 v^2 = 306x - 4 x^2 - 2704$	A1	4	CAO
(b)	If r is not greater than 26 cord is not	P1	1	Fither statement
(6)	stretched.	DI	1	or cord not taut
				no EPE
	Hence EPE cannot be used unless x is			
	greater than 26.			
(c)	At maximum value of $r = 0$	M1		Correct use of $y = 0$
(0)	$\therefore 4x^2 - 306x + 2704 = 0$	1011		
	x = 66.3	A1	2	CAO [bod if give 2 values]
<i>(</i>), (), (), (), (), (), (), (), (), (),				
(d)(i)	When speed is a maximum, $a = 0$	MI		
	tension = gravitational force	IVI I		or differentiating (a) 306 - 8x = 0
	$\frac{1456 \times (x-26)}{x-26} = 70 \sigma$			500 OK 0
	r = 26 - 12.25			
	x = 20 = 12.25 x = 38.25	A1	2	Accept 38.2 or 38.3
				Could be seen with no working
(11)	Using (a) and (d)(i)			
	$5 v^2 = 11704 5 - 5852 25 - 2704$			
	$v^2 = 629.65$			
	Maximum speed is 25.1 ms ⁻¹	B1	1	CAO
	Total		10	

Q	Solution	Mark	Total	Comment
9	$\mu R \longrightarrow P^{R}$		2	
	$a / PT = \tan 30$ $PT = \frac{\alpha}{\tan 30}$	B1		
	Resolve vertically R + S cos 30 + μ S sin 30 = W (1)	M1A1		Or resolve along the rod μ S+Rsin30 + μ Rcos 30 =W sin 30 M1 for any 4 terms; must include at least 1 friction term and a trig term
	Resolve horizontally $\mu R + \mu S \cos 30 = S \sin 30$ (2)	M1A1		Resolve perpendicular to rod S + R cos 30 = μ Rsin 30 +W cos30 M1 for any 4 terms; must include at least 1 friction term and a trig term
	Moments about P $PT \times S = W \times a \cos 30$ $\frac{a\cos 30}{\sin 30} \times S = W \times a \cos 30$ $S = W \sin 30$ or $= \frac{1}{2}W$	B1		If resolve horizontally M1 for any 3 terms; must include a trig term Allow,bod, if moments taken about another point
	(2) $\rightarrow \mu R = W (sin^2 30 - \mu sin 30 cos 30)$ or $\mu R = W (\frac{1}{4} - \frac{\sqrt{3}}{4} \mu)$			$R(\sin 30 + \mu \cos 30) = W \sin 30 (1 - \mu)$
	(1) $\rightarrow \mu R + \mu S \cos 30 + \mu^2 S \sin 30 = \mu W$ W $(\frac{1}{4} - \frac{\sqrt{3}}{4}\mu) + \mu \frac{1}{2}W\frac{\sqrt{3}}{2} + \mu^2 \frac{1}{2}W\frac{1}{2} = \mu W$			$R(\cos 30 - \mu \sin 30) = W(\cos 30 - \sin 30)$ Dividing
	$\mu = \sin^{2} 30 + \mu^{2} \sin^{2} 30$ or $\mu = \frac{1}{4} + \frac{1}{4} \mu^{2}$ $\mu^{2} - 4\mu + 1 = 0$ $\mu = 2 - \sqrt{3}$ or 0.268	m1 A1	8	$\frac{\sin 30^{-}\mu\cos 30}{\cos 30^{-}\mu\sin 30} = \frac{\sin 30(1^{-}\mu)}{\cos 30^{-}\sin 30}$ ml for simplifying into a quadratic Dependent on both M1 above condone $\mu = 2 + \sqrt{3}$
	·			•
	Total		8	
